Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1984 Aug;26(2):231–234. doi: 10.1128/aac.26.2.231

Correlation of in vitro activities of cephalothin and ceftazidime with their efficacies in the treatment of Staphylococcus aureus endocarditis in rabbits.

R L Baker, R J Fass
PMCID: PMC284127  PMID: 6385840

Abstract

Rabbits with Staphylococcus aureus endocarditis were treated with cephalothin or ceftazidime to determine whether differences in in vitro activity would result in differences in in vivo efficacy. Antibiotics were administered in doses equivalent to maximum recommended human doses, and results of laboratory tests to predict antimicrobial efficacy were determined during treatment. Cephalothin and ceftazidime MICs for the challenge strain were 0.5 and 8 micrograms/ml, respectively. MBCs were 32 and greater than 128 micrograms/ml, respectively. With peak sera, laboratory results (means) for cephalothin and ceftazidime were as follows: ratios of concentration in serum to MIC, 300 and 16; ratios of concentration in serum to MBC, 4.8 and less than 1; bacteriostatic antibacterial activity titers in serum, 1:256 and 1:16; and bactericidal antibacterial activity titers in serum, 1:16 and 1:4, respectively. Trough sera contained little or no measurable antibiotic and had no antibacterial activity. Both cephalothin and ceftazidime were efficacious in the treatment of infected rabbits. There were no statistically significant differences in efficacy as defined by survival, eradication of bacteremia, or sterilization of cardiac vegetations. Results of laboratory tests which quantitated antimicrobial activity did not correlate with efficacy, either independent of antibiotic or adjusted for antibiotic. Despite their lesser in vitro activities, the new cephalosporins may be equivalent to the older cephalosporins for treating staphylococcal infections in humans, when administered in maximum recommended doses.

Full text

PDF
231

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer G., Fekety F. R., Jr Experimental endocarditis due to Pseudomonas aeruginosa. II. Therapy with carbenicillin and gentamicin. J Infect Dis. 1977 Sep;136(3):327–335. doi: 10.1093/infdis/136.3.327. [DOI] [PubMed] [Google Scholar]
  2. Bryan C. S., Marney S. R., Jr, Alford R. H., Bryant R. E. Gram-negative bacillary endocarditis. Interpretation of the serum bactericial test. Am J Med. 1975 Feb;58(2):209–215. doi: 10.1016/0002-9343(75)90571-9. [DOI] [PubMed] [Google Scholar]
  3. CURTIS F. R., WILKINSON A. E. A comparison of the in vitro sensitivity of gonococci to penicillin with the results of treatment. Br J Vener Dis. 1958 Jun;34(2):70–82. doi: 10.1136/sti.34.2.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coleman D. L., Horwitz R. I., Andriole V. T. Association between serum inhibitory and bactericidal concentrations and therapeutic outcome in bacterial endocarditis. Am J Med. 1982 Aug;73(2):260–267. doi: 10.1016/0002-9343(82)90188-7. [DOI] [PubMed] [Google Scholar]
  5. Cunha B. A., Ristuccia A. M. Third generation cephalosporins. Med Clin North Am. 1982 Jan;66(1):283–291. doi: 10.1016/s0025-7125(16)31460-2. [DOI] [PubMed] [Google Scholar]
  6. DuPont H. L., Spink W. W. Infections due to gram-negative organisms: an analysis of 860 patients with bacteremia at the University of Minnesota Medical Center, 1958-1966. Medicine (Baltimore) 1969 Jul;48(4):307–332. doi: 10.1097/00005792-196907000-00003. [DOI] [PubMed] [Google Scholar]
  7. EAGLE H., FLEISCHMAN R., LEVY M. "Continuous" vs. "discontinuous" therapy with penicillin; the effect of the interval between injections on therapeutic efficacy. N Engl J Med. 1953 Mar 19;248(12):481–488. doi: 10.1056/NEJM195303192481201. [DOI] [PubMed] [Google Scholar]
  8. Ellner P. D., Neu H. C. The inhibitory quotient. A method for interpreting minimum inhibitory concentration data. JAMA. 1981 Oct 2;246(14):1575–1578. doi: 10.1001/jama.246.14.1575. [DOI] [PubMed] [Google Scholar]
  9. Farchione L. A., Chudzik G. M. Serum concentrations and inhibitory ratios during amikacin therapy of gram-negative infections. J Clin Pharmacol. 1978 Aug-Sep;18(8-9):432–438. doi: 10.1002/j.1552-4604.1978.tb02460.x. [DOI] [PubMed] [Google Scholar]
  10. Fass R. J. Laboratory tests for defining bactericidal activity as predictors of antibiotic efficacy in the treatment of endocarditis due to Staphylococcus aureus in rabbits. J Infect Dis. 1984 Jun;149(6):904–912. doi: 10.1093/infdis/149.6.904. [DOI] [PubMed] [Google Scholar]
  11. JAWETZ E. Assay of antibacterial activity in serum. A useful guide for complex antimicrobial therapy. Am J Dis Child. 1962 Jan;103:81–84. doi: 10.1001/archpedi.1962.02080020085014. [DOI] [PubMed] [Google Scholar]
  12. Jordan G. W., Kawachi M. M. Analysis of serum bactericidal activity in endocarditis, osteomyelitis, and other bacterial infections. Medicine (Baltimore) 1981 Jan;60(1):49–61. doi: 10.1097/00005792-198101000-00005. [DOI] [PubMed] [Google Scholar]
  13. Klastersky J., Daneau D., Swings G., Weerts D. Antibacterial activity in serum and urine as a therapeutic guide in bacterial infections. J Infect Dis. 1974 Feb;129(2):187–193. doi: 10.1093/infdis/129.2.187. [DOI] [PubMed] [Google Scholar]
  14. Klastersky J., Meunier-Carpentier F., Prevost J. M. Significance of antimicrobial synergism for the outcome of gram negative sepsis. Am J Med Sci. 1977 Mar-Apr;273(2):157–167. doi: 10.1097/00000441-197703000-00005. [DOI] [PubMed] [Google Scholar]
  15. McDonald P. J., Craig W. A., Kunin C. M. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis. 1977 Feb;135(2):217–223. doi: 10.1093/infdis/135.2.217. [DOI] [PubMed] [Google Scholar]
  16. Neu H. C. The new beta-lactamase-stable cephalosporins. Ann Intern Med. 1982 Sep;97(3):408–419. doi: 10.7326/0003-4819-97-3-408. [DOI] [PubMed] [Google Scholar]
  17. PETERSDORF R. G., CURTIN J. A., BENNETT I. L., Jr The sensitivity of two hundred strains of hemolytic Staphylococcus to a series of antibiotics. AMA Arch Intern Med. 1957 Dec;100(6):927–936. doi: 10.1001/archinte.1957.00260120071008. [DOI] [PubMed] [Google Scholar]
  18. Platt R., Ehrlich S. L., Afarian J., O'Brien T. F., Pennington J. E., Kass E. H. Moxalactam therapy of infections caused by cephalothin-resistant bacteria: influence of serum inhibitory activity on clinical response and acquisition of antibiotic resistance during therapy. Antimicrob Agents Chemother. 1981 Sep;20(3):351–355. doi: 10.1128/aac.20.3.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scheld W. M., Johnson M. L., Gerhardt E. B., Sande M. A. Clindamycin therapy of experimental Staphylococcus aureus endocarditis. Antimicrob Agents Chemother. 1982 Apr;21(4):646–649. doi: 10.1128/aac.21.4.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thompson R. L., Wright A. J. Cephalosporin antibiotics. Mayo Clin Proc. 1983 Feb;58(2):79–87. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES