Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 May;29(5):774–780. doi: 10.1128/aac.29.5.774

Lack of relevance of kinetic parameters for exocellular DD-peptidases to cephalosporin MICs.

D B Boyd, J L Ott
PMCID: PMC284153  PMID: 3729340

Abstract

MICs of a set of cephalosporins against a variety of gram-positive and gram-negative pathogens showed no strong correlations with the rate at which these inhibitors acylate or are deacylated by beta-lactam-sensitive DD-peptidases excreted by Streptomyces sp. strain R61 and Actinomadura sp. strain R39.

Full text

PDF
774

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler R. P. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):321–331. doi: 10.1098/rstb.1980.0049. [DOI] [PubMed] [Google Scholar]
  2. Blumberg P. M., Strominger J. L. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev. 1974 Sep;38(3):291–335. doi: 10.1128/br.38.3.291-335.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumberg P. M., Strominger J. L. Isolation by covalent affinity chromatography of the penicillin-binding components from membranes of Bacillus subtilis. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3751–3755. doi: 10.1073/pnas.69.12.3751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyd D. B. Electronic structures of cephalosporins and penicillins. 15. Inductive effect of the 3-position side chain in cephalosporins. J Med Chem. 1984 Jan;27(1):63–66. doi: 10.1021/jm00367a012. [DOI] [PubMed] [Google Scholar]
  5. Boyd D. B. Substituent effects in cephalosporins as assessed by molecular orbital calculations, nuclear magnetic resonance, and kinetics. J Med Chem. 1983 Jul;26(7):1010–1013. doi: 10.1021/jm00361a013. [DOI] [PubMed] [Google Scholar]
  6. Chabbert Y. A., Lutz A. J. HR 756, the syn isomer of a new methoxyimino cephalosporin with unusual antibacterial activity. Antimicrob Agents Chemother. 1978 Nov;14(5):749–754. doi: 10.1128/aac.14.5.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohen N. C. beta-Lactam antibiotics: geometrical requirements for antibacterial activities. J Med Chem. 1983 Feb;26(2):259–264. doi: 10.1021/jm00356a027. [DOI] [PubMed] [Google Scholar]
  8. Costa A., Botta G. A. Configuration of the methoxyimino group and penetration ability of cefotaxime and its structural analogues. J Antibiot (Tokyo) 1983 Aug;36(8):1007–1012. doi: 10.7164/antibiotics.36.1007. [DOI] [PubMed] [Google Scholar]
  9. Ellerbrok H., Hakenbeck R. Penicillin-binding proteins of Streptococcus pneumoniae: characterization of tryptic peptides containing the beta-lactam-binding site. Eur J Biochem. 1984 Nov 2;144(3):637–641. doi: 10.1111/j.1432-1033.1984.tb08512.x. [DOI] [PubMed] [Google Scholar]
  10. Faraci W. S., Pratt R. F. Mechanism of inhibition of the PC1 beta-lactamase of Staphylococcus aureus by cephalosporins: importance of the 3'-leaving group. Biochemistry. 1985 Feb 12;24(4):903–910. doi: 10.1021/bi00325a014. [DOI] [PubMed] [Google Scholar]
  11. Frère J. M., Joris B. Penicillin-sensitive enzymes in peptidoglycan biosynthesis. Crit Rev Microbiol. 1985;11(4):299–396. doi: 10.3109/10408418409105906. [DOI] [PubMed] [Google Scholar]
  12. Frère J. M. Mechanism of action of beta-lactam antibiotics at the molecular level. Biochem Pharmacol. 1977 Dec 1;26(23):2203–2210. doi: 10.1016/0006-2952(77)90280-5. [DOI] [PubMed] [Google Scholar]
  13. Ghuysen J. M., Frère J. M., Leyh-Bouille M., Coyette J., Dusart J., Nguyen-Distèche M. Use of model enzymes in the determination of the mode of action of penicillins and delta 3-cephalosporins. Annu Rev Biochem. 1979;48:73–101. doi: 10.1146/annurev.bi.48.070179.000445. [DOI] [PubMed] [Google Scholar]
  14. Ghuysen J. M., Frère J. M., Leyh-Bouille M., Nguyen-Distèche M., Coyette J., Dusart J., Joris B., Duez C., Dideberg O., Charlier P. Bacterial wall peptidoglycan, DD-peptidases and beta-lactam antibiotics. Scand J Infect Dis Suppl. 1984;42:17–37. [PubMed] [Google Scholar]
  15. Ghuysen J. M., Frère J. M., Leyh-Bouille M., Perkins H. R., Nieto M. The active centres in penicillin-sensitive enzymes. Philos Trans R Soc Lond B Biol Sci. 1980 May 16;289(1036):285–301. doi: 10.1098/rstb.1980.0046. [DOI] [PubMed] [Google Scholar]
  16. Ghuysen J. M. The concept of the penicillin target from 1965 until today. The thirteenth marjory stephenson memorial lecture. J Gen Microbiol. 1977 Jul;101(1):13–33. doi: 10.1099/00221287-101-1-13. [DOI] [PubMed] [Google Scholar]
  17. Graves B. J., Boyd D. B., Lipkowitz K. B. Correlations between CNDO/2 charge distribution and 13C NMR chemical shift in 7-acylamino side chains of cephalosporins. J Antibiot (Tokyo) 1984 Dec;37(12):1642–1650. doi: 10.7164/antibiotics.37.1642. [DOI] [PubMed] [Google Scholar]
  18. Hedge P. J., Spratt B. G. A gene fusion that localises the penicillin-binding domain of penicillin-binding protein 3 of Escherichia coli. FEBS Lett. 1984 Oct 15;176(1):179–184. doi: 10.1016/0014-5793(84)80936-9. [DOI] [PubMed] [Google Scholar]
  19. Jaurin B., Grundström T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4897–4901. doi: 10.1073/pnas.78.8.4897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Joris B., Dusart J., Frere J. M., van Beeumen J., Emanuel E. L., Petursson S., Gagnon J., Waley S. G. The active site of the P99 beta-lactamase from Enterobacter cloacae. Biochem J. 1984 Oct 1;223(1):271–274. doi: 10.1042/bj2230271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keck W., Glauner B., Schwarz U., Broome-Smith J. K., Spratt B. G. Sequences of the active-site peptides of three of the high-Mr penicillin-binding proteins of Escherichia coli K-12. Proc Natl Acad Sci U S A. 1985 Apr;82(7):1999–2003. doi: 10.1073/pnas.82.7.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kelly J. A., Dideberg O., Charlier P., Wery J. P., Libert M., Moews P. C., Knox J. R., Duez C., Fraipont C., Joris B. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science. 1986 Mar 21;231(4744):1429–1431. doi: 10.1126/science.3082007. [DOI] [PubMed] [Google Scholar]
  23. Kelly J. A., Knox J. R., Moews P. C., Hite G. J., Bartolone J. B., Zhao H., Joris B., Frère J. M., Ghuysen J. M. 2.8-A Structure of penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase from Streptomyces R61 and complexes with beta-lactams. J Biol Chem. 1985 May 25;260(10):6449–6458. [PubMed] [Google Scholar]
  24. Knott-Hunziker V., Petursson S., Jayatilake G. S., Waley S. G., Jaurin B., Grundström T. Active sites of beta-lactamases. The chromosomal beta-lactamases of Pseudomonas aeruginosa and Escherichia coli. Biochem J. 1982 Mar 1;201(3):621–627. doi: 10.1042/bj2010621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Labia R., Masson J. M., Baron P. About the affinity of cefotaxime and its anti isomer for the penicillin-binding proteins. J Antibiot (Tokyo) 1984 Jul;37(7):807–808. doi: 10.7164/antibiotics.37.807. [DOI] [PubMed] [Google Scholar]
  26. Laurent G., Durant F., Frere J. M., Klein D., Ghuysen J. M. Des-, syn- and anti-oxyimino-delta 3-cephalosporins. Intrinsic reactivity and reaction with RTEM-2 serine beta-lactamase and D-alanyl-D-alanine-cleaving serine and Zn2+-containing peptidases. Biochem J. 1984 Mar 15;218(3):933–937. doi: 10.1042/bj2180933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mirelman D., Nuchamowitz Y. Biosynthesis of peptidoglycan in Pseudomonas aeruginosa: comparison of the inhibitory effects of cefotaxime, its anti isomer, and the syn S-oxide compound. Antimicrob Agents Chemother. 1980 Feb;17(2):115–119. doi: 10.1128/aac.17.2.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nicholas R. A., Suzuki H., Hirota Y., Strominger J. L. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli. Biochemistry. 1985 Jul 2;24(14):3448–3453. doi: 10.1021/bi00335a009. [DOI] [PubMed] [Google Scholar]
  29. O'Callaghan C. H., Morris A., Kirby S. M., Shingler A. H. Novel method for detection of beta-lactamases by using a chromogenic cephalosporin substrate. Antimicrob Agents Chemother. 1972 Apr;1(4):283–288. doi: 10.1128/aac.1.4.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ochiai M., Aki O., Morimoto A., Okada T., Matsushita Y. New cephalosporin derivatives with high antibacterial activities. Chem Pharm Bull (Tokyo) 1977 Nov;25(11):3115–3117. doi: 10.1248/cpb.25.3115. [DOI] [PubMed] [Google Scholar]
  31. Ochiai M., Morimoto A., Miyawaki T., Matsushita Y., Okada T., Natsugari H., Kida M. Synthesis and structure-activity relationships of 7 beta-[2-(2-aminothiazol-4-yl)acetamido]cephalosporin derivatives. V. Synthesis and antibacterial activity of 7 beta-[2-(2-aminothiazol-4-yl)-2-methoxyiminoacetamido]-cephalosporin derivates and related compounds. J Antibiot (Tokyo) 1981 Feb;34(2):171–185. doi: 10.7164/antibiotics.34.171. [DOI] [PubMed] [Google Scholar]
  32. Ott J. L., Turner J. R., Mahoney D. F. Lack of correlation between beta-lactamase production and susceptibility to cefamandole or cefoxitin among spontaneous mutants of Enterobacteriaceae. Antimicrob Agents Chemother. 1979 Jan;15(1):14–19. doi: 10.1128/aac.15.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Richmond M. H. Factors influencing the antibacterial action of beta-lactam antibiotics. J Antimicrob Chemother. 1978 Jul;4(B):1–14. doi: 10.1093/jac/4.suppl_b.1. [DOI] [PubMed] [Google Scholar]
  34. Rodríguez-Tébar A., Barbas J. A., Vázquez D. Location of some proteins involved in peptidoglycan synthesis and cell division in the inner and outer membranes of Escherichia coli. J Bacteriol. 1985 Jan;161(1):243–248. doi: 10.1128/jb.161.1.243-248.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Spratt B. G. The mechanism of action of penicillin. Sci Prog. 1978 Spring;65(257):101–128. [PubMed] [Google Scholar]
  36. Tipper D. J. Mode of action of beta-lactam antibiotics. Pharmacol Ther. 1985;27(1):1–35. doi: 10.1016/0163-7258(85)90062-2. [DOI] [PubMed] [Google Scholar]
  37. Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol. 1979;33:113–137. doi: 10.1146/annurev.mi.33.100179.000553. [DOI] [PubMed] [Google Scholar]
  38. Ward J. B. Biosynthesis of peptidoglycan: points of attack by wall inhibitors. Pharmacol Ther. 1984;25(3):327–369. doi: 10.1016/0163-7258(84)90004-4. [DOI] [PubMed] [Google Scholar]
  39. Yoshimura F., Nikaido H. Diffusion of beta-lactam antibiotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother. 1985 Jan;27(1):84–92. doi: 10.1128/aac.27.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES