Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1989 Jun;33(6):813–816. doi: 10.1128/aac.33.6.813

Comparative in vitro antibiotic resistance of surface-colonizing coagulase-negative staphylococci.

A G Gristina 1, R A Jennings 1, P T Naylor 1, Q N Myrvik 1, L X Webb 1
PMCID: PMC284236  PMID: 2764528

Abstract

The MBCs of nafcillin, vancomycin, gentamicin and daptomycin (LY146032) were determined for three clinical isolates of coagulase-negative staphylococci grown in suspension and adherent to biomaterials. Strains studied were the slime-producing strain Staphylococcus epidermidis RP-12 (ATCC 35983), S. hyicus SE-360, and the non-slime-producing strain S. hominis SP-2 (ATCC 35982). All three strains were allowed to colonize surgical-grade disks of stainless steel, polymethylmethacrylate, and ultrahigh-molecular-weight polyethylene for 24 h, and the disks were then exposed to various concentrations of antibiotics for 24 h. Surviving adherent bacteria were mechanically dislodged from the disks and quantitated by standard broth dilution plating techniques. Biomaterial-adherent RP-12 and SE-360 yielded approximately 10 times more CFU per disk than non-slime-producing SP-2 did. For all organisms, 10 times more bacteria bound to polymethylmethacrylate disks than to the other biomaterials. In general, bacteria adherent to biomaterials exhibited greater resistance to antibiotics than the same strains in suspension did. Resistance was independent of bacterial slime-producing characteristics and was related to the biomaterial colonized.

Full text

PDF
813

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brown M. R., Allison D. G., Gilbert P. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother. 1988 Dec;22(6):777–780. doi: 10.1093/jac/22.6.777. [DOI] [PubMed] [Google Scholar]
  2. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun. 1982 Jul;37(1):318–326. doi: 10.1128/iai.37.1.318-326.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Christensen G. D., Simpson W. A., Bisno A. L., Beachey E. H. Experimental foreign body infections in mice challenged with slime-producing Staphylococcus epidermidis. Infect Immun. 1983 Apr;40(1):407–410. doi: 10.1128/iai.40.1.407-410.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J. Bacterial biofilms in nature and disease. Annu Rev Microbiol. 1987;41:435–464. doi: 10.1146/annurev.mi.41.100187.002251. [DOI] [PubMed] [Google Scholar]
  5. Diaz-Mitoma F., Harding G. K., Hoban D. J., Roberts R. S., Low D. E. Clinical significance of a test for slime production in ventriculoperitoneal shunt infections caused by coagulase-negative staphylococci. J Infect Dis. 1987 Oct;156(4):555–560. doi: 10.1093/infdis/156.4.555. [DOI] [PubMed] [Google Scholar]
  6. Eliopoulos G. M., Thauvin C., Gerson B., Moellering R. C., Jr In vitro activity and mechanism of action of A21978C1, a novel cyclic lipopeptide antibiotic. Antimicrob Agents Chemother. 1985 Mar;27(3):357–362. doi: 10.1128/aac.27.3.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Faruki H., Niles A. C., Heeren R. L., Murray P. R. Effect of calcium on in vitro activity of LY146032 against Clostridium difficile. Antimicrob Agents Chemother. 1987 Mar;31(3):461–462. doi: 10.1128/aac.31.3.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilbert P., Brown M. R., Costerton J. W. Inocula for antimicrobial sensitivity testing: a critical review. J Antimicrob Chemother. 1987 Aug;20(2):147–154. doi: 10.1093/jac/20.2.147. [DOI] [PubMed] [Google Scholar]
  9. Gray E. D., Peters G., Verstegen M., Regelmann W. E. Effect of extracellular slime substance from Staphylococcus epidermidis on the human cellular immune response. Lancet. 1984 Feb 18;1(8373):365–367. doi: 10.1016/s0140-6736(84)90413-6. [DOI] [PubMed] [Google Scholar]
  10. Gristina A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987 Sep 25;237(4822):1588–1595. doi: 10.1126/science.3629258. [DOI] [PubMed] [Google Scholar]
  11. Gristina A. G., Costerton J. W. Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop Clin North Am. 1984 Jul;15(3):517–535. [PubMed] [Google Scholar]
  12. Gristina A. G., Hobgood C. D., Webb L. X., Myrvik Q. N. Adhesive colonization of biomaterials and antibiotic resistance. Biomaterials. 1987 Nov;8(6):423–426. doi: 10.1016/0142-9612(87)90077-9. [DOI] [PubMed] [Google Scholar]
  13. Gristina A. G., Kolkin J. Current concepts review. Total joint replacement and sepsis. J Bone Joint Surg Am. 1983 Jan;65(1):128–134. [PubMed] [Google Scholar]
  14. Gristina A. G., Oga M., Webb L. X., Hobgood C. D. Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science. 1985 May 24;228(4702):990–993. doi: 10.1126/science.4001933. [DOI] [PubMed] [Google Scholar]
  15. Gwynn M. N., Webb T. L., Rolinson G. N. Regrowth of Pseudomonas aeruginosa and other bacteria after the bactericidal action of carbenicillin and other beta-lactam antibiotics. J Infect Dis. 1981 Sep;144(3):263–269. doi: 10.1093/infdis/144.3.263. [DOI] [PubMed] [Google Scholar]
  16. Ichiman Y., Yoshida K. The relationship of capsular-type of Staphylococcus epidermidis to virulence and induction of resistance in the mouse. J Appl Bacteriol. 1981 Oct;51(2):229–241. doi: 10.1111/j.1365-2672.1981.tb01237.x. [DOI] [PubMed] [Google Scholar]
  17. Nichols W. W., Dorrington S. M., Slack M. P., Walmsley H. L. Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother. 1988 Apr;32(4):518–523. doi: 10.1128/aac.32.4.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nickel J. C., Wright J. B., Ruseska I., Marrie T. J., Whitfield C., Costerton J. W. Antibiotic resistance of Pseudomonas aeruginosa colonizing a urinary catheter in vitro. Eur J Clin Microbiol. 1985 Apr;4(2):213–218. doi: 10.1007/BF02013600. [DOI] [PubMed] [Google Scholar]
  19. Pearson R. D., Steigbigel R. T., Davis H. T., Chapman S. W. Method of reliable determination of minimal lethal antibiotic concentrations. Antimicrob Agents Chemother. 1980 Nov;18(5):699–708. doi: 10.1128/aac.18.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peters G. New considerations in the pathogenesis of coagulase-negative staphylococcal foreign body infections. J Antimicrob Chemother. 1988 Apr;21 (Suppl 100):139–148. doi: 10.1093/jac/21.suppl_c.139. [DOI] [PubMed] [Google Scholar]
  21. Shanholtzer C. J., Peterson L. R., Mohn M. L., Moody J. A., Gerding D. N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob Agents Chemother. 1984 Aug;26(2):214–219. doi: 10.1128/aac.26.2.214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sheth N. K., Franson T. R., Sohnle P. G. Influence of bacterial adherence to intravascular catheters on in-vitro antibiotic susceptibility. Lancet. 1985 Dec 7;2(8467):1266–1268. doi: 10.1016/s0140-6736(85)91552-1. [DOI] [PubMed] [Google Scholar]
  23. Taylor P. C., Schoenknecht F. D., Sherris J. C., Linner E. C. Determination of minimum bactericidal concentrations of oxacillin for Staphylococcus aureus: influence and significance of technical factors. Antimicrob Agents Chemother. 1983 Jan;23(1):142–150. doi: 10.1128/aac.23.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Younger J. J., Christensen G. D., Bartley D. L., Simmons J. C., Barrett F. F. Coagulase-negative staphylococci isolated from cerebrospinal fluid shunts: importance of slime production, species identification, and shunt removal to clinical outcome. J Infect Dis. 1987 Oct;156(4):548–554. doi: 10.1093/infdis/156.4.548. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES