Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1991 Jun;35(6):1131–1136. doi: 10.1128/aac.35.6.1131

Significance of inducible cephalosporinase remaining in the experimentally infected rat granuloma pouch after beta-lactam therapy.

H Araki 1, S Minami 1, Y Watanabe 1, T Yasuda 1
PMCID: PMC284299  PMID: 1929254

Abstract

We studied the influence of inducible cephalosporinase on levels of secondarily administered beta-lactam antibiotics in exudates using experimentally infected rat granuloma pouches. Cefoperazone or cefmetazole was administered intramuscularly at a dose of 100 mg/kg of body weight to rats at 2 and 8 h after infection of rat pouches with Serratia marcescens W-24, which possesses an inducible type I beta-lactamase (cephalosporinase). Subsequently, cefotaxime or cefbuperazone was administered at an intravenous dose of 100 mg/kg to rats at 24 h postinfection. Levels of cefotaxime in the pouch exudates of the cefmetazole-pretreated group were lower than those in the control group, which was infected but not pretreated with antibiotics. This was due to the inactivation of cefotaxime by extracellular cephalosporinase which was induced by cefmetazole and which remained in the rat pouches. However, cefotaxime concentrations were not reduced in the cefoperazone-pretreated group because of the low inducibility of cefoperazone against cephalosporinase production. On the other hand, cefbuperazone concentrations were similar in all groups (control, cefoperazone pretreated, and cefmetazole pretreated), because cefbuperazone is more stable against this enzyme than cefotaxime is. In conclusion, concentrations of secondarily administered beta-lactam antibiotics are affected by inducibly produced cephalosporinase at the infection site when a good inducer like cefmetazole is administered beforehand.

Full text

PDF
1131

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aronoff S. C., Shlaes D. M. Factors that influence the evolution of beta-lactam resistance in beta-lactamase-inducible strains of Enterobacter cloacae and Pseudomonas aeruginosa. J Infect Dis. 1987 May;155(5):936–941. doi: 10.1093/infdis/155.5.936. [DOI] [PubMed] [Google Scholar]
  2. Aspiotis A., Cullmann W., Dick W., Stieglitz M. Inducible beta-lactamases are principally responsible for the naturally occurring resistance towards beta-lactam antibiotics in Proteus vulgaris. Chemotherapy. 1986;32(3):236–246. doi: 10.1159/000238420. [DOI] [PubMed] [Google Scholar]
  3. Farmer T. H., Reading C. The effects of clavulanic acid and sulbactam on beta-lactamase biosynthesis. J Antimicrob Chemother. 1988 Aug;22(2):105–111. doi: 10.1093/jac/22.2.105. [DOI] [PubMed] [Google Scholar]
  4. Goering R. V., Sanders C. C., Sanders W. E., Jr Antagonism of carbenicillin and cefamandole by cefoxitin in treatment of experimental infections in mice. Antimicrob Agents Chemother. 1982 Jun;21(6):963–967. doi: 10.1128/aac.21.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kuck N. A., Testa R. T., Forbes M. In vitro and in vivo antibacterial effects of combinations of beta-lactam antibiotics. Antimicrob Agents Chemother. 1981 Apr;19(4):634–638. doi: 10.1128/aac.19.4.634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Minami S., Matsubara N., Yotsuji A., Araki H., Watanabe Y., Yasuda T., Saikawa I., Mitsuhashi S. Inactivation of cephamycins by various beta-lactamases from gram-negative bacteria. J Antibiot (Tokyo) 1984 May;37(5):577–587. doi: 10.7164/antibiotics.37.577. [DOI] [PubMed] [Google Scholar]
  7. Minami S., Matsubara N., Yotsuji A., Araki H., Watanabe Y., Yasuda T., Saikawa I., Mitsuhashi S. Induction of cephalosporinase production by various penicillins in enterobacteriaceae. J Antibiot (Tokyo) 1983 Oct;36(10):1387–1395. doi: 10.7164/antibiotics.36.1387. [DOI] [PubMed] [Google Scholar]
  8. Minami S., Matsubara N., Yotsuji A., Watanabe Y., Yasuda T., Saikawa I., Mitsuhashi S. Antibacterial activity of cefoperazone alone and in combination against cephalosporinase-producing Enterobacter cloacae. Antimicrob Agents Chemother. 1983 Jul;24(1):123–125. doi: 10.1128/aac.24.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Minami S., Yotsuji A., Inoue M., Mitsuhashi S. Induction of beta-lactamase by various beta-lactam antibiotics in Enterobacter cloacae. Antimicrob Agents Chemother. 1980 Sep;18(3):382–385. doi: 10.1128/aac.18.3.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nakahama C., Kurokawa Y., Ueda S., Soejima R., Yamada M., Araki H., Minami S., Watanabe Y., Yasuda T., Saikawa I. [Detection of inducible beta-lactamase in sputum--clinical studies on Pseudomonas respiratory infection]. Kansenshogaku Zasshi. 1989 Apr;63(4):400–409. doi: 10.11150/kansenshogakuzasshi1970.63.400. [DOI] [PubMed] [Google Scholar]
  11. SELYE H. Use of granuloma pouch technic in the study of antiphlogistic corticoids. Proc Soc Exp Biol Med. 1953 Feb;82(2):328–333. doi: 10.3181/00379727-82-20108. [DOI] [PubMed] [Google Scholar]
  12. Saino Y., Inoue M., Mitsuhashi S. Purification and properties of an inducible cephalosporinase from Pseudomonas maltophilia GN12873. Antimicrob Agents Chemother. 1984 Mar;25(3):362–365. doi: 10.1128/aac.25.3.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sanders C. C., Sanders W. E., Jr, Goering R. V. In vitro antagonism of beta-lactam antibiotics by cefoxitin. Antimicrob Agents Chemother. 1982 Jun;21(6):968–975. doi: 10.1128/aac.21.6.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sanders C. C., Sanders W. E., Jr Microbial resistance to newer generation beta-lactam antibiotics: clinical and laboratory implications. J Infect Dis. 1985 Mar;151(3):399–406. doi: 10.1093/infdis/151.3.399. [DOI] [PubMed] [Google Scholar]
  15. Sanders C. C., Sanders W. E., Jr Type I beta-lactamases of gram-negative bacteria: interactions with beta-lactam antibiotics. J Infect Dis. 1986 Nov;154(5):792–800. doi: 10.1093/infdis/154.5.792. [DOI] [PubMed] [Google Scholar]
  16. Stobberingh E. E. Induction of chromosomal beta-lactamases by different concentrations of clavulanic acid in combination with ticarcillin. J Antimicrob Chemother. 1988 Jan;21(1):9–16. doi: 10.1093/jac/21.1.9. [DOI] [PubMed] [Google Scholar]
  17. Wise R., Wills P. J., Andrews J. M., Bedford K. A. Activity of the cefotaxime (HR756) desacetyl metabolite compared with those of cefotaxime and other cephalosporins. Antimicrob Agents Chemother. 1980 Jan;17(1):84–86. doi: 10.1128/aac.17.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yotsuji A., Minami S., Araki Y., Inoue M., Mitsuhashi S. Inducer activity of beta-lactam antibiotics for the beta-lactamases of Proteus rettgeri and Proteus vulgaris. J Antibiot (Tokyo) 1982 Nov;35(11):1590–1593. doi: 10.7164/antibiotics.35.1590. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES