Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Nov;36(11):2518–2522. doi: 10.1128/aac.36.11.2518

Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes.

P Legrand 1, E A Romero 1, B E Cohen 1, J Bolard 1
PMCID: PMC284364  PMID: 1489196

Abstract

In aqueous suspensions of amphotericin B (AmB), a polyene antibiotic and antifungal agent, three forms of AmB coexist: monomers, water-soluble oligomers, and non-water-soluble aggregates. The toxicity of the water-soluble self-associated form of AmB compared with that of the non-water-soluble self-associated form was tested by measuring induction of K+ leakage from human erythrocytes, using different suspensions containing the antibiotic and phosphate-buffered saline. These suspensions were obtained from various stock solutions of the antibiotic in dimethyl formamide or dimethyl sulfoxide. Their circular dichroism spectra around 340 nm, indicative of the degree of AmB self-association, were strongly dependent on the concentration of organic solvent in the suspensions. The nonsoluble self-associated form was separated from the water-soluble form by centrifugation. The nonsoluble form was favored by a high concentration of AmB of the stock solution. The kinetics of AmB-induced K+ leakage from human erythrocytes also appeared to be strongly dependent on the AmB concentration of the stock solution being much weaker with concentrated stock solutions. It was concluded that the only form of AmB toxic to human erythrocytes is the water-soluble self-associated form (in contrast with fungal cells on which the monomeric form is also active). This result may be important in the design of new less toxic AmB derivatives and in the understanding of the mechanism of action of liposomal AmB.

Full text

PDF
2518

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Binet A., Bolard J. Recovery of hepatocytes from attack by the pore former amphotericin B. Biochem J. 1988 Jul 15;253(2):435–440. doi: 10.1042/bj2530435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bolard J. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta. 1986 Dec 22;864(3-4):257–304. doi: 10.1016/0304-4157(86)90002-x. [DOI] [PubMed] [Google Scholar]
  3. Bolard J., Legrand P., Heitz F., Cybulska B. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991 Jun 11;30(23):5707–5715. doi: 10.1021/bi00237a011. [DOI] [PubMed] [Google Scholar]
  4. Bolard J., Seigneuret M., Boudet G. Interaction between phospholipid bilayer membranes and the polyene antibiotic amphotericin B: lipid state and cholesterol content dependence. Biochim Biophys Acta. 1980 Jun 20;599(1):280–293. doi: 10.1016/0005-2736(80)90074-7. [DOI] [PubMed] [Google Scholar]
  5. Brajtburg J., Powderly W. G., Kobayashi G. S., Medoff G. Amphotericin B: delivery systems. Antimicrob Agents Chemother. 1990 Mar;34(3):381–384. doi: 10.1128/aac.34.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chéron M., Cybulska B., Mazerski J., Grzybowska J., Czerwiński A., Borowski E. Quantitative structure-activity relationships in amphotericin B derivatives. Biochem Pharmacol. 1988 Mar 1;37(5):827–836. doi: 10.1016/0006-2952(88)90168-2. [DOI] [PubMed] [Google Scholar]
  7. Cohen B. E. A sequential mechanism for the formation of aqueous channels by amphotericin B in liposomes. The effect of sterols and phospholipid composition. Biochim Biophys Acta. 1992 Jul 8;1108(1):49–58. doi: 10.1016/0005-2736(92)90113-z. [DOI] [PubMed] [Google Scholar]
  8. Gruda I., Dussault N. Effect of the aggregation state of amphotericin B on its interaction with ergosterol. Biochem Cell Biol. 1988 Mar;66(3):177–183. doi: 10.1139/o88-024. [DOI] [PubMed] [Google Scholar]
  9. Harnois I., Genest D., Brochon J. C., Ptak M. Micellization and interactions with phospholipid vesicles of the lipopeptide iturin A, as monitored by time-resolved fluorescence of a D-tyrosyl residue. Biopolymers. 1988 Sep;27(9):1403–1413. doi: 10.1002/bip.360270907. [DOI] [PubMed] [Google Scholar]
  10. Jullien S., Brajtburg J., Bolard J. Affinity of amphotericin B for phosphatidylcholine vesicles as a determinant of the in vitro cellular toxicity of liposomal preparations. Biochim Biophys Acta. 1990 Jan 15;1021(1):39–45. doi: 10.1016/0005-2736(90)90381-w. [DOI] [PubMed] [Google Scholar]
  11. Jullien S., Contrepois A., Sligh J. E., Domart Y., Yeni P., Brajtburg J., Medoff G., Bolard J. Study of the effects of liposomal amphotericin B on Candida albicans, Cryptococcus neoformans, and erythrocytes by using small unilamellar vesicles prepared from saturated phospholipids. Antimicrob Agents Chemother. 1989 Mar;33(3):345–349. doi: 10.1128/aac.33.3.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lamy-Freund M. T., Ferreira V. F., Schreier S. Polydispersity of aggregates formed by the polyene antibiotic amphotericin B and deoxycholate. A spin label study. Biochim Biophys Acta. 1989 Jun 6;981(2):207–212. doi: 10.1016/0005-2736(89)90030-8. [DOI] [PubMed] [Google Scholar]
  13. Lamy-Freund M. T., Schreier S., Peitzsch R. M., Reed W. F. Characterization and time dependence of amphotericin B: deoxycholate aggregation by quasielastic light scattering. J Pharm Sci. 1991 Mar;80(3):262–266. doi: 10.1002/jps.2600800314. [DOI] [PubMed] [Google Scholar]
  14. Maget-Dana R., Harnois I., Ptak M. Interactions of the lipopeptide antifungal iturin A with lipids in mixed monolayers. Biochim Biophys Acta. 1989 Jun 6;981(2):309–314. doi: 10.1016/0005-2736(89)90042-4. [DOI] [PubMed] [Google Scholar]
  15. Maher P., Singer S. J. Structural changes in membranes produced by the binding of small amphipathic molecules. Biochemistry. 1984 Jan 17;23(2):232–240. doi: 10.1021/bi00297a010. [DOI] [PubMed] [Google Scholar]
  16. Maurin L., Bancel F., Morin P., Bienvenüe A. Interactions between a paramagnetic analogue of cholesterol and filipin. Biochim Biophys Acta. 1988 Mar 22;939(1):102–110. doi: 10.1016/0005-2736(88)90051-x. [DOI] [PubMed] [Google Scholar]
  17. Milhaud J., Hartmann M. A., Bolard J. Interaction of the polyene antibiotic amphotericin B with model membranes: differences between small and large unilamellar vesicles. Biochimie. 1989 Jan;71(1):49–56. doi: 10.1016/0300-9084(89)90130-2. [DOI] [PubMed] [Google Scholar]
  18. O'Neill L. J., Miller J. G., Petersen N. O. Evidence for nystatin micelles in L-cell membranes from fluorescence photobleaching measurements of diffusion. Biochemistry. 1986 Jan 14;25(1):177–181. doi: 10.1021/bi00349a026. [DOI] [PubMed] [Google Scholar]
  19. Ramos H., Romero E., Cohen B. E. The differential effect of liposomal amphotericin B on human erythrocytes and promastigotes of Leishmania sp. Acta Cient Venez. 1988;39(2):135–139. [PubMed] [Google Scholar]
  20. Schwarz G. Thermodynamics and kinetics of incorporation into a membrane. Biochimie. 1989 Jan;71(1):3–9. doi: 10.1016/0300-9084(89)90125-9. [DOI] [PubMed] [Google Scholar]
  21. Szponarski W., Bolard J. Temperature-dependent modes for the binding of the polyene antibiotic amphotericin B to human erythrocyte membranes. A circular dichroism study. Biochim Biophys Acta. 1987 Feb 26;897(2):229–237. doi: 10.1016/0005-2736(87)90419-6. [DOI] [PubMed] [Google Scholar]
  22. Szponarski W., Wietzerbin J., Borowski E., Gary-Bobo C. M. Interaction of 14C-labelled amphotericin B derivatives with human erythrocytes: relationship between binding and induced K+ leak. Biochim Biophys Acta. 1988 Feb 8;938(1):97–106. doi: 10.1016/0005-2736(88)90126-5. [DOI] [PubMed] [Google Scholar]
  23. Talbot J. C., Lalanne J., Faucon J. F., Dufourcq J. Effect of the state of association of melittin and phospholipids on their reciprocal binding. Biochim Biophys Acta. 1982 Jul 14;689(1):106–112. doi: 10.1016/0005-2736(82)90194-8. [DOI] [PubMed] [Google Scholar]
  24. Taniguchi T., Ichimura K., Kawashima S., Yamamura T., Tachi'iri Y., Satake K., Kihara H. Binding of Cu(II), Tb(III) and Fe(III) to chicken ovotransferrin. A kinetic study. Eur Biophys J. 1990;18(1):1–8. doi: 10.1007/BF00185414. [DOI] [PubMed] [Google Scholar]
  25. Vertut-Doi A., Hannaert P., Bolard J. The polyene antibiotic amphotericin B inhibits the Na+/K+ pump of human erythrocytes. Biochem Biophys Res Commun. 1988 Dec 15;157(2):692–697. doi: 10.1016/s0006-291x(88)80305-x. [DOI] [PubMed] [Google Scholar]
  26. Wietzerbin J., Szponarski W., Borowski E., Gary-Bobo C. M. Kinetic study of interaction between [14C]amphotericin B derivatives and human erythrocytes: relationship between binding and induced K+ leak. Biochim Biophys Acta. 1990 Jul 9;1026(1):93–98. doi: 10.1016/0005-2736(90)90337-n. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES