Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Nov;36(11):2562–2565. doi: 10.1128/aac.36.11.2562

Occurrence of the nfxB type mutation in clinical isolates of Pseudomonas aeruginosa.

E B Jakics 1, S Iyobe 1, K Hirai 1, H Fukuda 1, H Hashimoto 1
PMCID: PMC284377  PMID: 1489207

Abstract

Seven spontaneous norfloxacin (NFLX)-resistant mutants obtained in vitro from 20 NFLX-susceptible clinical isolates and 3 NFLX-resistant clinical isolates of Pseudomonas aeruginosa were transformed with the pNF111 plasmid, whose BamHI fragment is responsible for conferring susceptibility to NFLX, by complementing the nfxB mutation. The resulting patterns of MICs of NFLX, beta-lactams, aminoglycosides, and chloramphenicol and the observed increased accumulation of NFLX were consistent with the occurrence of the nfxB type mutation in these clinical isolates.

Full text

PDF
2562

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burman L. G. Apparent absence of transferable resistance to nalidixic acid in pathogenic Gram-negative bacteria. J Antimicrob Chemother. 1977 Sep;3(5):509–516. doi: 10.1093/jac/3.5.509. [DOI] [PubMed] [Google Scholar]
  2. Bustamante C. I., Wharton R. C., Wade J. C. In vitro activity of ciprofloxacin in combination with ceftazidime, aztreonam, and azlocillin against multiresistant isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990 Sep;34(9):1814–1815. doi: 10.1128/aac.34.9.1814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fujimoto S., Hashimoto H., Ike Y. Low cost device for electrotransformation and its application to the highly efficient transformation of Escherichia coli and Enterococcus faecalis. Plasmid. 1991 Sep;26(2):131–135. doi: 10.1016/0147-619x(91)90053-y. [DOI] [PubMed] [Google Scholar]
  4. Fukuda H., Hosaka M., Hirai K., Iyobe S. New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother. 1990 Sep;34(9):1757–1761. doi: 10.1128/aac.34.9.1757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hirai K., Suzue S., Irikura T., Iyobe S., Mitsuhashi S. Mutations producing resistance to norfloxacin in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1987 Apr;31(4):582–586. doi: 10.1128/aac.31.4.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Holmes B., Brogden R. N., Richards D. M. Norfloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1985 Dec;30(6):482–513. doi: 10.2165/00003495-198530060-00003. [DOI] [PubMed] [Google Scholar]
  7. Iyobe S., Hirai K., Hashimoto H. Drug resistance of Pseudomonas aeruginosa with special reference to new quinolones. Antibiot Chemother (1971) 1991;44:209–214. doi: 10.1159/000420316. [DOI] [PubMed] [Google Scholar]
  8. Kato T., Sato Y., Iyobe S., Mitsuhashi S. Plasmid-mediated gentamicin resistance of Pseudomonas aeruginosa and its lack of expression in Escherichia coli. Antimicrob Agents Chemother. 1982 Sep;22(3):358–363. doi: 10.1128/aac.22.3.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Neu H. C. Bacterial resistance to fluoroquinolones. Rev Infect Dis. 1988 Jan-Feb;10 (Suppl 1):S57–S63. doi: 10.1093/clinids/10.supplement_1.s57. [DOI] [PubMed] [Google Scholar]
  10. Okazaki T., Iyobe S., Hashimoto H., Hirai K. Cloning and characterization of a DNA fragment that complements the nfxB mutation in Pseudomonas aeruginosa PAO. FEMS Microbiol Lett. 1991 Mar 15;63(1):31–35. doi: 10.1016/0378-1097(91)90522-c. [DOI] [PubMed] [Google Scholar]
  11. Pitt T. L., Livermore D. M., Miller G., Vatopoulos A., Legakis N. J. Resistance mechanisms of multiresistant serotype 012 Pseudomonas aeruginosa isolated in Europe. J Antimicrob Chemother. 1990 Sep;26(3):319–328. doi: 10.1093/jac/26.3.319. [DOI] [PubMed] [Google Scholar]
  12. Rella M., Haas D. Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of beta-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother. 1982 Aug;22(2):242–249. doi: 10.1128/aac.22.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rådberg G., Nilsson L. E., Svensson S. Development of quinolone-imipenem cross resistance in Pseudomonas aeruginosa during exposure to ciprofloxacin. Antimicrob Agents Chemother. 1990 Nov;34(11):2142–2147. doi: 10.1128/aac.34.11.2142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Voutsinas D., Mavroudis T., Avlamis A., Giamarellou H. Comparative in vitro activity of cefepime (BMY 28142) against multiresistant nosocomial isolates of Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 1989 Oct;8(10):917–919. doi: 10.1007/BF01963783. [DOI] [PubMed] [Google Scholar]
  15. Yoshida H., Nakamura M., Bogaki M., Nakamura S. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1990 Jun;34(6):1273–1275. doi: 10.1128/aac.34.6.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES