Abstract
The present study was designed to determine the temporal changes in tobramycin nephrotoxicity during the dark and the light periods of the day and to look for the mechanisms of such changes. Female Sprague-Dawley rats (9 to 11 weeks old) were housed in a 14-h-light-10-h-dark cycle (lights on 0600 to 2000 h). A bolus of tobramycin (60 mg/kg of body weight) was intravenously injected into a first group of 15 rats, at either 1400 or 0200 h. Six blood samples were taken from each rat, 30 to 210 min after the bolus injection. The total clearance of the drug was reduced during the rest period (1400 h) of rats compared with the activity period (0200 h) (P = 0.0007). Another group of 99 rats was given intraperitoneally a single dose of tobramycin (40 mg/kg), and renal cortices were collected 2 to 222 h after injection. The cortical drug levels were always higher in animals injected at 1400 h than in those injected at 0200 h. A last group of 32 rats was used in the studies of tobramycin (30 mg/kg/day, once daily for 10 days, intraperitoneally) nephrotoxicity and subcellular distribution. Weight gain in the rats receiving tobramycin (both 1400 and 0200 h) was significantly (P = 0.028) less than that in the controls. Nephrotoxicity, indicated by the incorporation of [3H]thymidine into cortical DNA and urinary excretion of N-acetyl-beta-D-glucosaminidase, was significantly higher in animals treated at 1400 h than in those treated at 0200 h. No difference in the subcellular distribution of tobramycin was observed. The data indicate that the reduction in the clearance of tobramycin during the rest period is in part responsible for the higher nephrotoxicity in rats.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beauchamp D., Gourde P., Simard M., Bergeron M. G. Subcellular localization of tobramycin and vancomycin given alone and in combination in proximal tubular cells, determined by immunogold labeling. Antimicrob Agents Chemother. 1992 Oct;36(10):2204–2210. doi: 10.1128/aac.36.10.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brier M. E., Mayer P. R., Brier R. A., Visscher D., Luft F. C., Aronoff G. R. Relationship between rat renal accumulation of gentamicin, tobramycin, and netilmicin and their nephrotoxicities. Antimicrob Agents Chemother. 1985 May;27(5):812–816. doi: 10.1128/aac.27.5.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbert D. N., Plamp C., Starr P., Bennet W. M., Houghton D. C., Porter G. Comparative nephrotoxicity of gentamicin and tobramycin in rats. Antimicrob Agents Chemother. 1978 Jan;13(1):34–40. doi: 10.1128/aac.13.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laurent G., Maldague P., Carlier M. B., Tulkens P. M. Increased renal DNA synthesis in vivo after administration of low doses of gentamicin to rats. Antimicrob Agents Chemother. 1983 Oct;24(4):586–593. doi: 10.1128/aac.24.4.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruhn D. Rapid colorimetric assay of beta-galactosidase and N-acetyl-beta-glucosaminidase in human urine. Clin Chim Acta. 1976 Dec;73(3):453–461. doi: 10.1016/0009-8981(76)90147-9. [DOI] [PubMed] [Google Scholar]
- Yamaoka K., Nakagawa T., Uno T. Application of Akaike's information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm. 1978 Apr;6(2):165–175. doi: 10.1007/BF01117450. [DOI] [PubMed] [Google Scholar]
- Yoshiyama Y., Kobayashi T., Tomonaga F., Nakano S. Chronotoxical study of gentamicin induced nephrotoxicity in rats. J Antibiot (Tokyo) 1992 May;45(5):806–808. doi: 10.7164/antibiotics.45.806. [DOI] [PubMed] [Google Scholar]

