Abstract
We evaluated the pharmacokinetics and therapeutic efficacies of piperacillin and tazobactam, a beta-lactamase inhibitor, given either alone or in different combinations (80:10, 200:10, and 80:25 mg/kg/h), in experimental meningitis due to a strain of Klebsiella pneumoniae producing the TEM-3 extended-spectrum beta-lactamase. Treatment was administered intravenously as a 7-h constant infusion preceded by a bolus of 20% of the total dose. The mean (+/- standard deviation) rates of penetration into the cerebrospinal fluid (CSF) of infected animals were 6.7 +/- 3.9% for piperacillin given alone and 36.3 +/- 21.9% for tazobactam given alone. Combination treatment significantly magnified the concentration of either drug in CSF. Concentrations of bacteria in CSF increased throughout therapy in animals given either drug alone, even at high dosages. In animals given the combination at dosages of 80:10 and 200/10 mg/kg/h, only a suboptimal reduction of CSF bacterial titers was obtained in vivo, i.e. -0.49 +/- 0.34 and -0.73 +/- 0.49 log CFU/ml/h, respectively. An increase in the tazobactam dosage within the combination (80:25 mg/kg/h) was required in order to obtain a significantly faster elimination of viable organisms from the CSF (-0.97 +/- 0.35 log CFU/ml/h). The study shows that tazobactam is able to provide effective protection against piperacillin hydrolysis by the TEM-3 enzyme within the CSF. Appropriate dosage regimens of various beta-lactam-tazobactam combinations may deserve comparative studies in experimental meningitis caused by organisms producing extended-spectrum beta-lactamases.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronoff S. C., Jacobs M. R., Johenning S., Yamabe S. Comparative activities of the beta-lactamase inhibitors YTR 830, sodium clavulanate, and sulbactam combined with amoxicillin or ampicillin. Antimicrob Agents Chemother. 1984 Oct;26(4):580–582. doi: 10.1128/aac.26.4.580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bakken J. S., Bruun J. N., Gaustad P., Tasker T. C. Penetration of amoxicillin and potassium clavulanate into the cerebrospinal fluid of patients with inflamed meninges. Antimicrob Agents Chemother. 1986 Sep;30(3):481–484. doi: 10.1128/aac.30.3.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brun-Buisson C., Legrand P., Philippon A., Montravers F., Ansquer M., Duval J. Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae. Lancet. 1987 Aug 8;2(8554):302–306. doi: 10.1016/s0140-6736(87)90891-9. [DOI] [PubMed] [Google Scholar]
- Dacey R. G., Sande M. A. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob Agents Chemother. 1974 Oct;6(4):437–441. doi: 10.1128/aac.6.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decazes J. M., Bure A., Wolff M., Kitzis M. D., Pangon B., Modai J. Bactericidal activity against Haemophilus influenzae of cerebrospinal fluid of patients given amoxicillin-clavulanic acid. Antimicrob Agents Chemother. 1987 Dec;31(12):2018–2019. doi: 10.1128/aac.31.12.2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decazes J. M., Ernst J. D., Sande M. A. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 1983 Oct;24(4):463–467. doi: 10.1128/aac.24.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decazes J. M., Meulemans A., Bure A., Laisne M. J., Modai J. Pénétration de la pipéracilline dans le liquide céphalo-rachidien des malades atteints de méningite purulente. Presse Med. 1984 Feb 11;13(5):261–264. [PubMed] [Google Scholar]
- Dickinson G. M., Droller D. G., Greenman R. L., Hoffman T. A. Clinical evaluation of piperacillin with observations on penetrability into cerebrospinal fluid. Antimicrob Agents Chemother. 1981 Oct;20(4):481–486. doi: 10.1128/aac.20.4.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foulds G., McBride T. J., Knirsch A. K., Rodriguez W. J., Khan W. N. Penetration of sulbactam and ampicillin into cerebrospinal fluid of infants and young children with meningitis. Antimicrob Agents Chemother. 1987 Nov;31(11):1703–1705. doi: 10.1128/aac.31.11.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerra-Romero L., Kennedy S. L., Fournier M. A., Tureen J. H., Täuber M. G. Use of ampicillin-sulbactam for treatment of experimental meningitis caused by a beta-lactamase-producing strain of Escherichia coli K-1. Antimicrob Agents Chemother. 1991 Oct;35(10):2037–2041. doi: 10.1128/aac.35.10.2037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gutmann L., Kitzis M. D., Yamabe S., Acar J. F. Comparative evaluation of a new beta-lactamase inhibitor, YTR 830, combined with different beta-lactam antibiotics against bacteria harboring known beta-lactamases. Antimicrob Agents Chemother. 1986 May;29(5):955–957. doi: 10.1128/aac.29.5.955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs M. R., Aronoff S. C., Johenning S., Shlaes D. M., Yamabe S. Comparative activities of the beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with ampicillin and broad-spectrum penicillins against defined beta-lactamase-producing aerobic gram-negative bacilli. Antimicrob Agents Chemother. 1986 Jun;29(6):980–985. doi: 10.1128/aac.29.6.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs M. R., Aronoff S. C., Johenning S., Yamabe S. Comparative activities of the beta-lactamase inhibitors YTR 830, clavulanate and sulbactam combined with extended-spectrum penicillins against ticarcillin-resistant Enterobacteriaceae and pseudomonads. J Antimicrob Chemother. 1986 Aug;18(2):177–184. doi: 10.1093/jac/18.2.177. [DOI] [PubMed] [Google Scholar]
- Jarlier V., Nicolas M. H., Fournier G., Philippon A. Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988 Jul-Aug;10(4):867–878. doi: 10.1093/clinids/10.4.867. [DOI] [PubMed] [Google Scholar]
- Kern W., Kennedy S. L., Sachdeva M., Sande E. R., Gunderson D., Täuber M. G. Evaluation of piperacillin-tazobactam in experimental meningitis caused by a beta-lactamase-producing strain of K1-positive Escherichia coli. Antimicrob Agents Chemother. 1990 May;34(5):697–701. doi: 10.1128/aac.34.5.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kitzis M. D., Billot-Klein D., Goldstein F. W., Williamson R., Tran Van Nhieu G., Carlet J., Acar J. F., Gutmann L. Dissemination of the novel plasmid-mediated beta-lactamase CTX-1, which confers resistance to broad-spectrum cephalosporins, and its inhibition by beta-lactamase inhibitors. Antimicrob Agents Chemother. 1988 Jan;32(1):9–14. doi: 10.1128/aac.32.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kliebe C., Nies B. A., Meyer J. F., Tolxdorff-Neutzling R. M., Wiedemann B. Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother. 1985 Aug;28(2):302–307. doi: 10.1128/aac.28.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knothe H., Shah P., Krcmery V., Antal M., Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983 Nov-Dec;11(6):315–317. doi: 10.1007/BF01641355. [DOI] [PubMed] [Google Scholar]
- Mentec H., Vallois J. M., Bure A., Saleh-Mghir A., Jehl F., Carbon C. Piperacillin, tazobactam, and gentamicin alone or combined in an endocarditis model of infection by a TEM-3-producing strain of Klebsiella pneumoniae or its susceptible variant. Antimicrob Agents Chemother. 1992 Sep;36(9):1883–1889. doi: 10.1128/aac.36.9.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mizen L., Woodnutt G., Kernutt I., Catherall E. J. Simulation of human serum pharmacokinetics of ticarcillin-clavulanic acid and ceftazidime in rabbits, and efficacy against experimental Klebsiella pneumoniae meningitis. Antimicrob Agents Chemother. 1989 May;33(5):693–699. doi: 10.1128/aac.33.5.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirot D., Sirot J., Labia R., Morand A., Courvalin P., Darfeuille-Michaud A., Perroux R., Cluzel R. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel beta-lactamase. J Antimicrob Chemother. 1987 Sep;20(3):323–334. doi: 10.1093/jac/20.3.323. [DOI] [PubMed] [Google Scholar]
- Syrogiannopoulos G. A., Al-Sabbagh A., Olsen K. D., McCracken G. H., Jr Pharmacokinetics and bacteriological efficacy of ticarcillin-clavulanic acid (timentin) in experimental Escherichia coli K-1 and Haemophilus influenzae type b meningitis. Antimicrob Agents Chemother. 1987 Sep;31(9):1296–1300. doi: 10.1128/aac.31.9.1296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise R., Logan M., Cooper M., Andrews J. M. Pharmacokinetics and tissue penetration of tazobactam administered alone and with piperacillin. Antimicrob Agents Chemother. 1991 Jun;35(6):1081–1084. doi: 10.1128/aac.35.6.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]