Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 Apr;38(4):641–647. doi: 10.1128/aac.38.4.641

Purification and characterization of aminoglycoside 3'-phosphotransferase type IIa and kinetic comparison with a new mutant enzyme.

J J Siregar 1, S A Lerner 1, S Mobashery 1
PMCID: PMC284518  PMID: 8031025

Abstract

Aminoglycoside 3'-phosphotransferase [APH(3')s] provide an important means for high-level resistance to neomycin- and kanamycin-type aminoglycoside antibiotics. A four-step purification which affords milligram quantities of homogeneous APH(3') type IIa [APH(3')-IIa] is described. The kinetic parameters for the turnover of five substrates by the enzyme were determined, and the pH dependence and metal activation for catalysis were investigated. All five cysteines in the amino acid sequence of the enzyme exist in their reduced forms; hence, there are no disulfide bonds in the protein. Modification of the cysteine thiols by S-cyanylation showed essentially no effect on the enzymatic activity. A mutant enzyme derived from APH-3'-IIa, which possesses a conservative Glu-182-Asp point mutation and which provides diminished resistance to G418 (R. L. Yenofsky, M. Fine, and J. W. Pellow, Proc. Natl. Acad. Sci. USA 87:3435-3439, 1990), was also purified to homogeneity. Kinetic analysis of this mutant protein indicated an increase of approximately ninefold in the Km for Mg2+ ATP. Insofar as Km may approximate Ks, this finding argues for the involvement of residue 182 in the binding of Mg2+ ATP. Thus, purified APH(3')-IIa and a point mutant derivative enzyme were characterized enzymologically, and the roles of metal cofactors and the five reduced cysteine residues were probed in the wild-type enzyme.

Full text

PDF
641

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beck E., Ludwig G., Auerswald E. A., Reiss B., Schaller H. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene. 1982 Oct;19(3):327–336. doi: 10.1016/0378-1119(82)90023-3. [DOI] [PubMed] [Google Scholar]
  2. Betts G. F., Evans H. J. The effect of cations on the electrophoretic mobility and substrate binding properties of pyruvate kinase. Biochim Biophys Acta. 1968 Aug 27;167(1):190–193. doi: 10.1016/0005-2744(68)90291-x. [DOI] [PubMed] [Google Scholar]
  3. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  4. Blázquez J., Davies J., Moreno F. Mutations in the aphA-2 gene of transposon Tn5 mapping within the regions highly conserved in aminoglycoside-phosphotransferases strongly reduce aminoglycoside resistance. Mol Microbiol. 1991 Jun;5(6):1511–1518. doi: 10.1111/j.1365-2958.1991.tb00798.x. [DOI] [PubMed] [Google Scholar]
  5. Bochner B. R., Ames B. N. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Brenner S. Phosphotransferase sequence homology. Nature. 1987 Sep 3;329(6134):21–21. doi: 10.1038/329021a0. [DOI] [PubMed] [Google Scholar]
  8. Davies R. C., Riordan J. F., Auld D. S., Vallee B. L. Kinetics of carboxypeptidase A. I. Hydrolysis of carbobenzoxyglycyl-l-phenylalanine, benzoylglycyl-l-phenylalanine, and hippuryl-dl-beta-phenyllactic acid by metal-substituted and acetylated carboxypeptidases. Biochemistry. 1968 Mar;7(3):1090–1099. doi: 10.1021/bi00843a029. [DOI] [PubMed] [Google Scholar]
  9. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  10. Findly R. C., Gillies R. J., Shulman R. G. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science. 1983 Mar 11;219(4589):1223–1225. doi: 10.1126/science.6828852. [DOI] [PubMed] [Google Scholar]
  11. Garnier J., Osguthorpe D. J., Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978 Mar 25;120(1):97–120. doi: 10.1016/0022-2836(78)90297-8. [DOI] [PubMed] [Google Scholar]
  12. Gaykema W. P., Volbeda A., Hol W. G. Structure determination of Panulirus interruptus haemocyanin at 3.2 A resolution. Successful phase extension by sixfold density averaging. J Mol Biol. 1986 Jan 20;187(2):255–275. doi: 10.1016/0022-2836(86)90233-0. [DOI] [PubMed] [Google Scholar]
  13. Goldman P. R., Northrop D. B. Purification and spectrophotometric assay of neomycin phosphotransferase II1;. Biochem Biophys Res Commun. 1976 Mar 8;69(1):230–236. doi: 10.1016/s0006-291x(76)80297-5. [DOI] [PubMed] [Google Scholar]
  14. Heinrikson R. L., Meredith S. C. Amino acid analysis by reverse-phase high-performance liquid chromatography: precolumn derivatization with phenylisothiocyanate. Anal Biochem. 1984 Jan;136(1):65–74. doi: 10.1016/0003-2697(84)90307-5. [DOI] [PubMed] [Google Scholar]
  15. Holmes M. A., Matthews B. W. Structure of thermolysin refined at 1.6 A resolution. J Mol Biol. 1982 Oct 5;160(4):623–639. doi: 10.1016/0022-2836(82)90319-9. [DOI] [PubMed] [Google Scholar]
  16. Loll P. J., Lattman E. E. Active site mutant Glu-43----Asp in staphylococcal nuclease displays nonlocal structural changes. Biochemistry. 1990 Jul 24;29(29):6866–6873. doi: 10.1021/bi00481a016. [DOI] [PubMed] [Google Scholar]
  17. Martin P., Jullien E., Courvalin P. Nucleotide sequence of Acinetobacter baumannii aphA-6 gene: evolutionary and functional implications of sequence homologies with nucleotide-binding proteins, kinases and other aminoglycoside-modifying enzymes. Mol Microbiol. 1988 Sep;2(5):615–625. doi: 10.1111/j.1365-2958.1988.tb00070.x. [DOI] [PubMed] [Google Scholar]
  18. Matsuhashi Y., Sawa T., Takeuchi T., Umezawa H. Purification of aminoglycoside 3'-phosphotransferase II. J Antibiot (Tokyo) 1976 Feb;29(2):204–207. doi: 10.7164/antibiotics.29.204. [DOI] [PubMed] [Google Scholar]
  19. Mildvan A. S., Leigh J. S., Cohn M. Kinetic and magnetic resonance studies of pyruvate kinase. 3. The enzyme-metal-phosphoryl bridge complex in the fluorokinase reaction. Biochemistry. 1967 Jun;6(6):1805–1818. doi: 10.1021/bi00858a032. [DOI] [PubMed] [Google Scholar]
  20. Mobashery S., Kaiser E. T. Identification of amino acid residues involved in substrate recognition by the catalytic subunit of bovine cyclic AMP dependent protein kinase: peptide-based affinity labels. Biochemistry. 1988 May 17;27(10):3691–3696. doi: 10.1021/bi00410a025. [DOI] [PubMed] [Google Scholar]
  21. Perlin M. H., Lerner S. A. High-level amikacin resistance in Escherichia coli due to phosphorylation and impaired aminoglycoside uptake. Antimicrob Agents Chemother. 1986 Feb;29(2):216–224. doi: 10.1128/aac.29.2.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Perlin M. H., Lerner S. A. Localization of an amikacin 3'-phosphotransferase in Escherichia coli. J Bacteriol. 1981 Aug;147(2):320–325. doi: 10.1128/jb.147.2.320-325.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Perlin M. H., McCarty S. C., Greer J. P. Coupled spectrofluorometric assay for aminoglycoside phosphotransferases. Anal Biochem. 1988 May 15;171(1):145–149. doi: 10.1016/0003-2697(88)90135-2. [DOI] [PubMed] [Google Scholar]
  24. Shaw K. J., Rather P. N., Hare R. S., Miller G. H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993 Mar;57(1):138–163. doi: 10.1128/mr.57.1.138-163.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Trieu-Cuot P., Courvalin P. Evolution and transfer of aminoglycoside resistance genes under natural conditions. J Antimicrob Chemother. 1986 Oct;18 (Suppl 100):93–102. doi: 10.1093/jac/18.supplement_c.93. [DOI] [PubMed] [Google Scholar]
  26. Yenofsky R. L., Fine M., Pellow J. W. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc Natl Acad Sci U S A. 1990 May;87(9):3435–3439. doi: 10.1073/pnas.87.9.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES