Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 Jul;38(7):1548–1554. doi: 10.1128/aac.38.7.1548

Effects of dirithromycin and erythromycylamine on human neutrophil degranulation.

H Abdelghaffar 1, E M Mtairag 1, M T Labro 1
PMCID: PMC284591  PMID: 7979287

Abstract

Dirithromycin and, to a lesser extent, erythromycylamine and erythromycin directly induced the release of three intragranular enzymes (lysozyme, lactoferrin, and beta-glucuronidase) from unstimulated human neutrophils. Macrolide-induced enzyme release was dependent upon the incubation time (30 to 180 min) and drug concentration. Dirithromycin was the most effective. At 120 min, release of lysozyme, beta-glucuronidase, and lactoferrin by macrolide (100 micrograms/ml)-treated cells, expressed as a percentage of total enzyme content, was, respectively, 58% +/- 8.3%, 52% +/- 10.7%, and 35% +/- 5.1% (dirithromycin); 42% +/- 3.9%, 28% +/- 5.8%, and 10% +/- 2.2% (erythromycylamine); and 35% +/- 4.0%, 19% +/- 4.3%, and 10% +/- 5.2% (erythromycin) (mean +/- standard error of the mean of three to eight experiments). The lowest macrolide concentrations which induced significant enzyme release were 10, 100, and 25 micrograms/ml, respectively, for dirithromycin, erythromycylamine, and erythromycin. Furthermore, we obtained evidence of a link between the prodegranulation effects of dirithromycin and erythromycylamine and the intragranular location of these drugs. Indeed, cell-associated drug levels increased for up to 60 min and then plateaued and declined substantially. Increasing the pH from 7 to 9 resulted in a parallel increase in drug uptake and the prodegranulation effect. Finally, when macrolide-treated neutrophils were disrupted by sonication and centrifuged, a correlation was found between lysozyme and beta-glucuronidase activities (both granule markers) and pellet-associated macrolide levels. Taken together, our results suggest that dirithromycin and erythromycylamine concentrate within neutrophil granules and then induce degranulation.

Full text

PDF
1548

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. Erythromycin and roxithromycin potentiate human neutrophil locomotion in vitro by inhibition of leukoattractant-activated superoxide generation and autooxidation. J Infect Dis. 1989 May;159(5):966–973. doi: 10.1093/infdis/159.5.966. [DOI] [PubMed] [Google Scholar]
  2. Anderson R., Joone G., van Rensburg C. E. An in-vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, TE-031), a new macrolide antimicrobial agent. J Antimicrob Chemother. 1988 Dec;22(6):923–933. doi: 10.1093/jac/22.6.923. [DOI] [PubMed] [Google Scholar]
  3. Anderson R., Van Rensburg C. E., Jooné G., Lukey P. T. An in-vitro comparison of the intraphagocytic bioactivity of erythromycin and roxithromycin. J Antimicrob Chemother. 1987 Nov;20 (Suppl B):57–68. doi: 10.1093/jac/20.suppl_b.57. [DOI] [PubMed] [Google Scholar]
  4. Bowman E. J., Siebers A., Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7972–7976. doi: 10.1073/pnas.85.21.7972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carević O., Djokić S. Comparative studies on the effects of erythromycin A and azithromycin upon extracellular release of lysosomal enzymes in inflammatory processes. Agents Actions. 1988 Aug;25(1-2):124–131. doi: 10.1007/BF01969103. [DOI] [PubMed] [Google Scholar]
  6. Carlier M. B., Zenebergh A., Tulkens P. M. Cellular uptake and subcellular distribution of roxithromycin and erythromycin in phagocytic cells. J Antimicrob Chemother. 1987 Nov;20 (Suppl B):47–56. doi: 10.1093/jac/20.suppl_b.47. [DOI] [PubMed] [Google Scholar]
  7. Dette G. A., Knothe H. Kinetics of erythromycin uptake and release by human lymphocytes and polymorphonuclear leucocytes. J Antimicrob Chemother. 1986 Jul;18(1):73–82. doi: 10.1093/jac/18.1.73. [DOI] [PubMed] [Google Scholar]
  8. Engquist S., Lundberg C., Petterson C. Effect of phenoxymethylpenicillin, erythromycin, lymecycline and doxycycline upon the release of proteases from human leukocytes. Eur J Clin Microbiol. 1983 Jun;2(3):221–223. doi: 10.1007/BF02029521. [DOI] [PubMed] [Google Scholar]
  9. Fittschen C., Henson P. M. Selective secretion of azurophil granule contents induced by monovalent cation ionophores in human neutrophils: evidence for direct ionophore effects on the granule membrane. J Leukoc Biol. 1991 Nov;50(5):517–528. doi: 10.1002/jlb.50.5.517. [DOI] [PubMed] [Google Scholar]
  10. Fontagne J., Roch-Arveiller M., Giroud J. P., Lechat P. Effects of some antimalarial drugs on rat inflammatory polymorphonuclear leukocyte function. Biomed Pharmacother. 1989;43(1):43–51. doi: 10.1016/0753-3322(89)90190-x. [DOI] [PubMed] [Google Scholar]
  11. Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hand W. L., Hand D. L., King-Thompson N. L. Antibiotic inhibition of the respiratory burst response in human polymorphonuclear leukocytes. Antimicrob Agents Chemother. 1990 May;34(5):863–870. doi: 10.1128/aac.34.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hetherington S. V., Spitznagel J. K., Quie P. G. An enzyme-linked immunoassay (ELISA) for measurement of lactoferrin. J Immunol Methods. 1983 Dec 16;65(1-2):183–190. doi: 10.1016/0022-1759(83)90314-9. [DOI] [PubMed] [Google Scholar]
  14. Ishiguro M., Koga H., Kohno S., Hayashi T., Yamaguchi K., Hirota M. Penetration of macrolides into human polymorphonuclear leucocytes. J Antimicrob Chemother. 1989 Nov;24(5):719–729. doi: 10.1093/jac/24.5.719. [DOI] [PubMed] [Google Scholar]
  15. Jooné G. K., Van Rensburg C. E., Anderson R. Investigation of the in-vitro uptake, intraphagocytic biological activity and effects on neutrophil superoxide generation of dirithromycin compared with erythromycin. J Antimicrob Chemother. 1992 Oct;30(4):509–523. doi: 10.1093/jac/30.4.509. [DOI] [PubMed] [Google Scholar]
  16. LITWACK G. Photometric determination of lysozyme activity. Proc Soc Exp Biol Med. 1955 Jul;89(3):401–403. doi: 10.3181/00379727-89-21824. [DOI] [PubMed] [Google Scholar]
  17. Labro M. T., el Benna J., Abdelghaffar H. Modulation of human polymorphonuclear neutrophil function by macrolides: preliminary data concerning dirithromycin. J Antimicrob Chemother. 1993 Mar;31 (Suppl 100):51–64. doi: 10.1093/jac/31.suppl_c.51. [DOI] [PubMed] [Google Scholar]
  18. Labro M. T., el Benna J., Babin-Chevaye C. Comparison of the in-vitro effect of several macrolides on the oxidative burst of human neutrophils. J Antimicrob Chemother. 1989 Oct;24(4):561–572. doi: 10.1093/jac/24.4.561. [DOI] [PubMed] [Google Scholar]
  19. Miller M. F., Martin J. R., Johnson P., Ulrich J. T., Rdzok E. J., Billing P. Erythromycin uptake and accumulation by human polymorphonuclear leukocytes and efficacy of erythromycin in killing ingested Legionella pneumophila. J Infect Dis. 1984 May;149(5):714–718. doi: 10.1093/infdis/149.5.714. [DOI] [PubMed] [Google Scholar]
  20. Mtairag E. M., Abdelghaffar H., Labro M. T. Investigation of dirithromycin and erythromycylamine uptake by human neutrophils in vitro. J Antimicrob Chemother. 1994 Mar;33(3):523–536. doi: 10.1093/jac/33.3.523. [DOI] [PubMed] [Google Scholar]
  21. Stamm W. E., Suchland R. Antimicrobial activity of U-70138F (paldimycin), roxithromycin (RU 965), and ofloxacin (ORF 18489) against Chlamydia trachomatis in cell culture. Antimicrob Agents Chemother. 1986 Nov;30(5):806–807. doi: 10.1128/aac.30.5.806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Styrt B., Klempner M. S. Internal pH of human neutrophil lysosomes. FEBS Lett. 1982 Nov 22;149(1):113–116. doi: 10.1016/0014-5793(82)81083-1. [DOI] [PubMed] [Google Scholar]
  23. Wildfeuer A., Reisert I., Laufen H. Uptake and subcellular distribution of azithromycin in human phagocytic cells. Demonstration of the antibiotic in neutrophil polymorphonuclear leucocytes and monocytes by autoradiography and electron microscopy. Arzneimittelforschung. 1993 Apr;43(4):484–486. [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES