Abstract
Lesions introduced into cellular DNAs prelabeled with [2-14C]thymidine or [6-3H]thymidine, as well as cell killing, were inhibited by the presence of EDTA during 20-min reactions of Saccharomyces cerevisiae cells with the low-molecular-weight bleomycin family of anticancer antibiotics. In contrast, the level of killing by low concentrations of bleomycin was higher among cells which had grown for three generations in defined synthetic complete medium supplemented with ferrous sulfate than among cells grown without iron supplementation. In S. cerevisiae, the uptake of iron is facilitated by a plasma membrane ferric reductase activity and a high-affinity (Km = 5 x 10(-6) M) ferrous uptake system. Lethal effects of 1.3 x 10(-6) M bleomycin increased approximately 50% with 10(-5) M Fe(II), nearly twofold with 10(-4) M Fe(II), and 2.8 times with 10(-3) M Fe(II). Thus, iron preloading is a new experimental approach to increasing and studying the effects of the glycopeptides on cellular DNAs and other cellular targets. This approach could also be used for studying and better understanding DNA repair genes and could serve as a model for studies of redox active chemicals in biological systems.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burger R. M., Berkowitz A. R., Peisach J., Horwitz S. B. Origin of malondialdehyde from DNA degraded by Fe(II) x bleomycin. J Biol Chem. 1980 Dec 25;255(24):11832–11838. [PubMed] [Google Scholar]
- Burger R. M., Peisach J., Blumberg W. E., Horwitz S. B. Iron-bleomycin interactions with oxygen and oxygen analogues. Effects on spectra and drug activity. J Biol Chem. 1979 Nov 10;254(21):10906–10912. [PubMed] [Google Scholar]
- Burger R. M., Peisach J., Horwitz S. B. Activated bleomycin. A transient complex of drug, iron, and oxygen that degrades DNA. J Biol Chem. 1981 Nov 25;256(22):11636–11644. [PubMed] [Google Scholar]
- Burger R. M., Peisach J., Horwitz S. B. Mechanism of bleomycin action: in vitro studies. Life Sci. 1981 Feb 16;28(7):715–727. doi: 10.1016/0024-3205(81)90153-3. [DOI] [PubMed] [Google Scholar]
- Carrier W. L., Setlow R. B. Paper strip method for assaying gradient fractions containing radioactive macromolecules. Anal Biochem. 1971 Oct;43(2):427–432. doi: 10.1016/0003-2697(71)90272-7. [DOI] [PubMed] [Google Scholar]
- Crane F. L., Roberts H., Linnane A. W., Löw H. Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae. J Bioenerg Biomembr. 1982 Jun;14(3):191–205. doi: 10.1007/BF00745020. [DOI] [PubMed] [Google Scholar]
- Dancis A., Klausner R. D., Hinnebusch A. G., Barriocanal J. G. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol. 1990 May;10(5):2294–2301. doi: 10.1128/mcb.10.5.2294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehmann U. K., Lett J. T. Review and evaluation of molecular weight calculations from the sedimentation profiles of irradiated DNA. Radiat Res. 1973 Apr;54(1):152–162. [PubMed] [Google Scholar]
- Forte M. A., Fangman W. L. Naturally occurring cross-links in yeast chromosomal DNA. Cell. 1976 Jul;8(3):425–431. doi: 10.1016/0092-8674(76)90155-0. [DOI] [PubMed] [Google Scholar]
- Grollman A. P., Takeshita M. Interactions of bleomycin with DNA. Adv Enzyme Regul. 1980;18:67–83. doi: 10.1016/0065-2571(80)90009-6. [DOI] [PubMed] [Google Scholar]
- Gutteridge J. M., Shute D. J. Iron--dioxygen-dependent changes to the biological activities of bleomycin. J Inorg Biochem. 1981 Dec;15(4):349–357. doi: 10.1016/s0162-0134(00)80238-x. [DOI] [PubMed] [Google Scholar]
- Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H., Mortimer R. K., Culotti J., Culotti M. Genetic Control of the Cell Division Cycle in Yeast: V. Genetic Analysis of cdc Mutants. Genetics. 1973 Jun;74(2):267–286. doi: 10.1093/genetics/74.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hartwell L. H. Sequential function of gene products relative to DNA synthesis in the yeast cell cycle. J Mol Biol. 1976 Jul 15;104(4):803–817. doi: 10.1016/0022-2836(76)90183-2. [DOI] [PubMed] [Google Scholar]
- Kozarich J. W., Worth L., Jr, Frank B. L., Christner D. F., Vanderwall D. E., Stubbe J. Sequence-specific isotope effects on the cleavage of DNA by bleomycin. Science. 1989 Sep 22;245(4924):1396–1399. doi: 10.1126/science.2476851. [DOI] [PubMed] [Google Scholar]
- Lesuisse E., Raguzzi F., Crichton R. R. Iron uptake by the yeast Saccharomyces cerevisiae: involvement of a reduction step. J Gen Microbiol. 1987 Nov;133(11):3229–3236. doi: 10.1099/00221287-133-11-3229. [DOI] [PubMed] [Google Scholar]
- Moore C. W. Bleomycin-induced DNA repair by Saccharomyces cerevisiae ATP-dependent polydeoxyribonucleotide ligase. J Bacteriol. 1988 Oct;170(10):4991–4994. doi: 10.1128/jb.170.10.4991-4994.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore C. W. Cleavage of cellular and extracellular Saccharomyces cerevisiae DNA by bleomycin and phleomycin. Cancer Res. 1989 Dec 15;49(24 Pt 1):6935–6940. [PubMed] [Google Scholar]
- Moore C. W. Control of in vivo (cellular) phleomycin sensitivity by nuclear genotype, growth phase, and metal ions. Cancer Res. 1982 Mar;42(3):929–933. [PubMed] [Google Scholar]
- Moore C. W. Degradation of DNA and structure-activity relationship between bleomycins A2 and B2 in the absence of DNA repair. Biochemistry. 1990 Feb 6;29(5):1342–1347. doi: 10.1021/bi00457a033. [DOI] [PubMed] [Google Scholar]
- Moore C. W. Internucleosomal cleavage and chromosomal degradation by bleomycin and phleomycin in yeast. Cancer Res. 1988 Dec 1;48(23):6837–6843. [PubMed] [Google Scholar]
- Moore C. W., Jones C. S., Wall L. A. Growth phase dependency of chromatin cleavage and degradation by bleomycin. Antimicrob Agents Chemother. 1989 Sep;33(9):1592–1599. doi: 10.1128/aac.33.9.1592. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore C. W. Ligase-deficient yeast cells exhibit defective DNA rejoining and enhanced gamma ray sensitivity. J Bacteriol. 1982 Jun;150(3):1227–1233. doi: 10.1128/jb.150.3.1227-1233.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore C. W. cdc9 ligase-defective mutants of Saccharomyces cerevisiae exhibit lowered resistance to lethal effects of bleomycin. J Bacteriol. 1982 Sep;151(3):1617–1620. doi: 10.1128/jb.151.3.1617-1620.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura M., Peisach J. Self-inactivation of Fe(II)-bleomycin. J Antibiot (Tokyo) 1988 May;41(5):638–647. doi: 10.7164/antibiotics.41.638. [DOI] [PubMed] [Google Scholar]
- Petering D. H., Byrnes R. W., Antholine W. E. The role of redox-active metals in the mechanism of action of bleomycin. Chem Biol Interact. 1990;73(2-3):133–182. doi: 10.1016/0009-2797(90)90001-4. [DOI] [PubMed] [Google Scholar]
- Petes T. D., Fangman W. L. Sedimentation properties of yeast chromosomal DNA. Proc Natl Acad Sci U S A. 1972 May;69(5):1188–1191. doi: 10.1073/pnas.69.5.1188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Povirk L. F., Austin M. J. Genotoxicity of bleomycin. Mutat Res. 1991 Mar;257(2):127–143. doi: 10.1016/0165-1110(91)90022-n. [DOI] [PubMed] [Google Scholar]
- Povirk L. F. Catalytic release of deoxyribonucleic acid bases by oxidation and reduction of an iron.bleomycin complex. Biochemistry. 1979 Sep 4;18(18):3989–3995. doi: 10.1021/bi00585a023. [DOI] [PubMed] [Google Scholar]
- Resnick M. A., Martin P. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol Gen Genet. 1976 Jan 16;143(2):119–129. doi: 10.1007/BF00266917. [DOI] [PubMed] [Google Scholar]
- Reynolds R. J., Friedberg E. C. Molecular mechanism of pyrimidine dimer excision in Saccharomyces cerevisiae. I. Studies with intact cells and cell-free systems. Basic Life Sci. 1980;15:121–139. doi: 10.1007/978-1-4684-3842-0_8. [DOI] [PubMed] [Google Scholar]
- Reynolds R. J., Friedberg E. C. Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: incision of ultraviolet-irradiated deoxyribonucleic acid in vivo. J Bacteriol. 1981 May;146(2):692–704. doi: 10.1128/jb.146.2.692-704.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sausville E. A., Peisach J., Horwitz S. B. Effect of chelating agents and metal ions on the degradation of DNA by bleomycin. Biochemistry. 1978 Jul 11;17(14):2740–2746. doi: 10.1021/bi00607a007. [DOI] [PubMed] [Google Scholar]
- Sausville E. A., Stein R. W., Peisach J., Horwitz S. B. Properties and products of the degradation of DNA by bleomycin and iron(II). Biochemistry. 1978 Jul 11;17(14):2746–2754. doi: 10.1021/bi00607a008. [DOI] [PubMed] [Google Scholar]
- Smith P. J. Ferrous iron-mediated enhancement of DNA damage and recovery potential in bleomycin-treated human cells. Biochem Pharmacol. 1987 Feb 15;36(4):475–480. doi: 10.1016/0006-2952(87)90354-6. [DOI] [PubMed] [Google Scholar]
- Templin J., Berry L., Lyman S., Byrnes R. W., Antholine W. E., Petering D. H. Properties of redox-inactivated bleomycins. In vitro DNA damage and inhibition of Ehrlich cell proliferation. Biochem Pharmacol. 1992 Feb 4;43(3):615–623. doi: 10.1016/0006-2952(92)90585-7. [DOI] [PubMed] [Google Scholar]
