Abstract
The abilities of 22,23-epoxy-2-aza-2,3-dihydrosqualene and the corresponding N-oxide, 22,23-epoxy-2-aza-2,3-dihydrosqualene-N-oxide, to inhibit sterol biosynthesis were studied in microsomes and cells of Saccharomyces cerevisiae and Candida albicans. 22,23-Epoxy-2-aza-2,3-dihydrosqualene, which differs from the other inhibitor only in lacking oxygen at position 2, exhibited higher inhibitory properties in all preparations tested. The different levels of effectiveness of the two azasqualene derivatives were evident mostly in microsomes from S. cerevisiae (the 50 inhibitory concentrations of the 2-aza derivative and the corresponding N-oxide on oxidosqualene cyclase were 30 and 120 microM respectively) and in cell cultures of the same strain (1 order of magnitude separated the inhibitory activities of the two compounds on sterol biosynthesis). A possible explanation for the differences between 22,23-epoxy-2-aza-2,3-dihydrosqualene and the corresponding N-oxide arose from the study of their metabolic fates in vivo and in vitro. While the 2-aza derivative did not undergo any transformation, the N-oxide compound was actively reduced to the corresponding amine in microsomes and in cells of both yeast strains. 22,23-Epoxy-2-aza-2,3-dihydrosqualene-N-oxide seems to behave as a proinhibitor of sterol biosynthesis, becoming active only after transformation into the active form 22,23-epoxy-2-aza-2,3-dihydrosqualene.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balliano G., Milla P., Ceruti M., Viola F., Carrano L., Cattel L. Differential inhibition of fungal oxidosqualene cyclase by 6E and 6Z isomers of 2,3-epoxy-10-aza-10,11-dihydrosqualene. FEBS Lett. 1993 Apr 12;320(3):203–206. doi: 10.1016/0014-5793(93)80586-j. [DOI] [PubMed] [Google Scholar]
- Balliano G., Viola F., Ceruti M., Cattel L. Inhibition of sterol biosynthesis in Saccharomyces cerevisiae by N,N-diethylazasqualene and derivatives. Biochim Biophys Acta. 1988 Mar 4;959(1):9–19. doi: 10.1016/0005-2760(88)90144-0. [DOI] [PubMed] [Google Scholar]
- Barrett E. L., Kwan H. S. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 1985;39:131–149. doi: 10.1146/annurev.mi.39.100185.001023. [DOI] [PubMed] [Google Scholar]
- Cattel L., Ceruti M., Balliano G., Viola F., Grosa G., Schuber F. Drug design based on biosynthetic studies: synthesis, biological activity, and kinetics of new inhibitors of 2,3-oxidosqualene cyclase and squalene epoxidase. Steroids. 1989 Mar-May;53(3-5):363–391. doi: 10.1016/0039-128x(89)90020-2. [DOI] [PubMed] [Google Scholar]
- Cattel L., Ceruti M., Viola F., Delprino L., Balliano G., Duriatti A., Bouvier-Navé P. The squalene-2,3-epoxide cyclase as a model for the development of new drugs. Lipids. 1986 Jan;21(1):31–38. doi: 10.1007/BF02534300. [DOI] [PubMed] [Google Scholar]
- Ceruti M., Balliano G., Viola F., Grosa G., Rocco F., Cattel L. 2,3-Epoxy-10-aza-10,11-dihydrosqualene, a high-energy intermediate analogue inhibitor of 2,3-oxidosqualene cyclase. J Med Chem. 1992 Aug 7;35(16):3050–3058. doi: 10.1021/jm00094a020. [DOI] [PubMed] [Google Scholar]
- Dean P. D. The cyclases of triterpene and sterol biosynthesis. Steroidologia. 1971;2(3):143–157. [PubMed] [Google Scholar]
- Duriatti A., Bouvier-Nave P., Benveniste P., Schuber F., Delprino L., Balliano G., Cattel L. In vitro inhibition of animal and higher plants 2,3-oxidosqualene-sterol cyclases by 2-aza-2,3-dihydrosqualene and derivatives, and by other ammonium-containing molecules. Biochem Pharmacol. 1985 Aug 1;34(15):2765–2777. doi: 10.1016/0006-2952(85)90578-7. [DOI] [PubMed] [Google Scholar]
- Jolidon S., Polak A. M., Guerry P., Hartman P. G. Inhibitors of 2,3-oxidosqualene lanosterol-cyclase as potential antifungal agents. Biochem Soc Trans. 1990 Feb;18(1):47–48. doi: 10.1042/bst0180047. [DOI] [PubMed] [Google Scholar]
- Kitamura S., Tatsumi K. Reduction of tertiary amine N-oxides by liver preparations: function of aldehyde oxidase as a major N-oxide reductase. Biochem Biophys Res Commun. 1984 Jun 29;121(3):749–754. doi: 10.1016/0006-291x(84)90742-3. [DOI] [PubMed] [Google Scholar]
- Schroepfer G. J., Jr Sterol biosynthesis. Annu Rev Biochem. 1982;51:555–585. doi: 10.1146/annurev.bi.51.070182.003011. [DOI] [PubMed] [Google Scholar]
- Smith E. B. History of antifungals. J Am Acad Dermatol. 1990 Oct;23(4 Pt 2):776–778. doi: 10.1016/0190-9622(90)70286-q. [DOI] [PubMed] [Google Scholar]
- Viola F., Ceruti M., Balliano G., Caputo O., Cattel L. 22,23-Epoxy-2-aza-2,3-dihydrosqualene derivatives: potent new inhibitors of squalene 2,3-oxide-lanosterol cyclase. Farmaco. 1990 Sep;45(9):965–978. [PubMed] [Google Scholar]
- Viola F., Grosa G., Ceruti M., Caputo O., Cattel L. In vitro metabolism of azasqualene derivatives and their effects on aminopyrine N-demethylase activity in rat liver microsomes. Biochem Pharmacol. 1989 Aug 1;38(15):2497–2503. doi: 10.1016/0006-2952(89)90094-4. [DOI] [PubMed] [Google Scholar]
