Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 Sep;38(9):2169–2171. doi: 10.1128/aac.38.9.2169

Pig kidney (LLC-PK1) cell membrane fluidity during exposure to gentamicin or tobramycin.

S J Kohlhepp 1, L Hou 1, D N Gilbert 1
PMCID: PMC284703  PMID: 7811038

Abstract

The surface membrane properties of LLC-PK1 cells grown with and without various amounts of gentamicin or tobramycin for various lengths of time were determined by measuring the diffusion coefficient of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)dipalmitoyl-L- alpha-phosphatidylethanolamine (NBD-PE) and the percentage of NBD-PE free to diffuse after photobleaching. One hour of exposure to tobramycin decreased the percentage that was free to diffuse. After 1 day or longer of exposure to either aminoglycoside the percentage that was free to diffuse returned to preexposure levels and the diffusion coefficient decreased.

Full text

PDF
2169

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appelkvist E. L., Söderström M., Nässberger L., Damberg C., Dallner G., DePierre J. W. Characterization of the lipid and protein contents of myelin bodies isolated from the renal cortex of gentamicin-treated rats. Biochem Biophys Res Commun. 1991 Dec 16;181(2):894–901. doi: 10.1016/0006-291x(91)91275-h. [DOI] [PubMed] [Google Scholar]
  2. Aubert-Tulkens G., Van Hoof F., Tulkens P. Gentamicin-induced lysosomal phospholipidosis in cultured rat fibroblasts. Quantitative ultrastructural and biochemical study. Lab Invest. 1979 Apr;40(4):481–491. [PubMed] [Google Scholar]
  3. Brasseur R., Laurent G., Ruysschaert J. M., Tulkens P. Interactions of aminoglycoside antibiotics with negatively charged lipid layers. Biochemical and conformational studies. Biochem Pharmacol. 1984 Feb 15;33(4):629–637. doi: 10.1016/0006-2952(84)90319-8. [DOI] [PubMed] [Google Scholar]
  4. Buchanan J. H., Stevens A., Sidhu J. Aminoglycoside antibiotic treatment of human fibroblasts: intracellular accumulation, molecular changes and the loss of ribosomal accuracy. Eur J Cell Biol. 1987 Feb;43(1):141–147. [PubMed] [Google Scholar]
  5. Chatterjee S., Trifillis A. L., Regec A. L. Biochemical and morphological effects of gentamicin in human proximal tubular cells: effects on lipid and lipoprotein metabolism. Biochem Cell Biol. 1987 Dec;65(12):1049–1056. doi: 10.1139/o87-137. [DOI] [PubMed] [Google Scholar]
  6. Cui S. Y., Christensen E. I., Nielsen S. Membrane traffic after inhibition of endocytosis in renal proximal tubules. J Struct Biol. 1991 Dec;107(3):201–210. doi: 10.1016/1047-8477(91)90045-x. [DOI] [PubMed] [Google Scholar]
  7. Davis B. D. Mechanism of bactericidal action of aminoglycosides. Microbiol Rev. 1987 Sep;51(3):341–350. doi: 10.1128/mr.51.3.341-350.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Elliget K. A., Phelps P. C., Trump B. F. HgCl2-induced alteration of actin filaments in cultured primary rat proximal tubule epithelial cells labelled with fluorescein phalloidin. Cell Biol Toxicol. 1991 Jul;7(3):263–280. doi: 10.1007/BF00250980. [DOI] [PubMed] [Google Scholar]
  9. Goffeau A., Aubert-Tulkens G., Van Hoff F. Gentamicin induces a lysosomal phospholipidosis in cultured rat fibroblast [proceedings]. Arch Int Physiol Biochim. 1978 May;86(2):403–405. [PubMed] [Google Scholar]
  10. Hostetler K. Y., Hall L. B. Aminoglycoside antibiotics inhibit lysosomal phospholipase A and C from rat liver in vitro. Biochim Biophys Acta. 1982 Mar 12;710(3):506–509. doi: 10.1016/0005-2760(82)90136-9. [DOI] [PubMed] [Google Scholar]
  11. Hou L., Luby-Phelps K., Lanni F. Brownian motion of inert tracer macromolecules in polymerized and spontaneously bundled mixtures of actin and filamin. J Cell Biol. 1990 May;110(5):1645–1654. doi: 10.1083/jcb.110.5.1645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Knauss T. C., Weinberg J. M., Humes H. D. Alterations in renal cortical phospholipid content induced by gentamicin: time course, specificity, and subcellular localization. Am J Physiol. 1983 May;244(5):F535–F546. doi: 10.1152/ajprenal.1983.244.5.F535. [DOI] [PubMed] [Google Scholar]
  13. Koppel D. E., Axelrod D., Schlessinger J., Elson E. L., Webb W. W. Dynamics of fluorescence marker concentration as a probe of mobility. Biophys J. 1976 Nov;16(11):1315–1329. doi: 10.1016/S0006-3495(76)85776-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laurent G., Carlier M. B., Rollman B., Van Hoof F., Tulkens P. Mechanism of aminoglycoside-induced lysosomal phospholipidosis: in vitro and in vivo studies with gentamicin and amikacin. Biochem Pharmacol. 1982 Dec 1;31(23):3861–3870. doi: 10.1016/0006-2952(82)90303-3. [DOI] [PubMed] [Google Scholar]
  15. Malorni W., Iosi F., Mirabelli F., Bellomo G. Cytoskeleton as a target in menadione-induced oxidative stress in cultured mammalian cells: alterations underlying surface bleb formation. Chem Biol Interact. 1991;80(2):217–236. doi: 10.1016/0009-2797(91)90026-4. [DOI] [PubMed] [Google Scholar]
  16. Moriyama T., Nakahama H., Fukuhara Y., Horio M., Yanase M., Orita Y., Kamada T., Kanashiro M., Miyake Y. Decrease in the fluidity of brush-border membrane vesicles induced by gentamicin. A spin-labeling study. Biochem Pharmacol. 1989 Apr 1;38(7):1169–1174. doi: 10.1016/0006-2952(89)90264-5. [DOI] [PubMed] [Google Scholar]
  17. Nakahama H., Moriyama T., Horio M., Fukuhara Y., Ueda N., Orita Y., Kamada T. Netilmicin affects Na(+)-dependent D-glucose transport and the membrane fluidity of rabbit renal brush-border membrane vesicles: a comparison with gentamicin. Toxicol Lett. 1990 Sep;53(1-2):201–202. doi: 10.1016/0378-4274(90)90126-7. [DOI] [PubMed] [Google Scholar]
  18. Oshima M., Hashiguchi M., Nakasuji M., Shindo N., Shibata S. Biochemical mechanisms of aminoglycoside cell toxicity. II. Accumulation of phospholipids during myeloid body formation and histological studies on myeloid bodies using twelve aminoglycoside antibiotics. J Biochem. 1989 Nov;106(5):794–797. doi: 10.1093/oxfordjournals.jbchem.a122932. [DOI] [PubMed] [Google Scholar]
  19. Schacht J. Isolation of an aminoglycoside receptor from guinea pig inner ear tissues and kidney. Arch Otorhinolaryngol. 1979;224(1-2):129–134. doi: 10.1007/BF00455236. [DOI] [PubMed] [Google Scholar]
  20. Schwertz D. W., Kreisberg J. I., Venkatachalam M. A. Gentamicin-induced alterations in pig kidney epithelial (LLC-PK1) cells in culture. J Pharmacol Exp Ther. 1986 Jan;236(1):254–262. [PubMed] [Google Scholar]
  21. Sens M. A., Hennigar G. R., Hazen-Martin D. J., Blackburn J. G., Sens D. A. Cultured human proximal tubule cells as a model for aminoglycoside nephrotoxicity. Ann Clin Lab Sci. 1988 May-Jun;18(3):204–214. [PubMed] [Google Scholar]
  22. Tulkens P., Trouet A. The uptake and intracellular accumulation of aminoglycoside antibiotics in lysosomes of cultured rat fibroblasts. Biochem Pharmacol. 1978 Feb 15;27(4):415–424. doi: 10.1016/0006-2952(78)90370-2. [DOI] [PubMed] [Google Scholar]
  23. Williams P. D. The application of renal cells in culture in studying drug-induced nephrotoxicity. In Vitro Cell Dev Biol. 1989 Sep;25(9):800–805. doi: 10.1007/BF02623663. [DOI] [PubMed] [Google Scholar]
  24. Yguerabide J., Schmidt J. A., Yguerabide E. E. Lateral mobility in membranes as detected by fluorescence recovery after photobleaching. Biophys J. 1982 Oct;40(1):69–75. doi: 10.1016/S0006-3495(82)84459-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES