Abstract
The in vitro activities of the N,N-dimethylglycyl-amino derivative of minocycline (DMG-MINO) and 6-dimethyl-6-dexoxytetracycline (DMG-DMDOT), members of a new generation of tetracyclines, were evaluated by an agar dilution method and were compared with those of tetracycline and minocycline against 224 tetracycline-resistant and 73 tetracycline-susceptible recent clinical isolates of gram-positive cocci, including multiple-antibiotic-resistant methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus pneumoniae. The MICs of DMG-MINO and DMG-DMDOT were up to 500- to 2,000-fold lower than those of tetracycline against methicillin-resistant S. aureus and Streptococcus pneumoniae (MIC for 50% of strains tested [MIC50], < 0.06 microgram/ml). Against Streptococcus groups A, B, C, and G and Enterococcus faecalis, the MIC50 was 0.5 microgram/ml. MIC50s were greater only for coagulase-negative staphylococci (2 micrograms/ml). These data indicate that DMG-MINO and DMG-DMDOT are very potent drugs, and further in vitro and in vivo studies are warranted.
Full text
PDF![2218](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ddb/284718/e2796d2c975a/aac00373-0346.png)
![2219](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ddb/284718/741be83942e1/aac00373-0347.png)
![2220](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ddb/284718/8dc2a9d5727b/aac00373-0348.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bismuth R., Zilhao R., Sakamoto H., Guesdon J. L., Courvalin P. Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrob Agents Chemother. 1990 Aug;34(8):1611–1614. doi: 10.1128/aac.34.8.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chopra I., Hawkey P. M., Hinton M. Tetracyclines, molecular and clinical aspects. J Antimicrob Chemother. 1992 Mar;29(3):245–277. doi: 10.1093/jac/29.3.245. [DOI] [PubMed] [Google Scholar]
- Eliopoulos G. M., Wennersten C. B., Cole G., Moellering R. C. In vitro activities of two glycylcyclines against gram-positive bacteria. Antimicrob Agents Chemother. 1994 Mar;38(3):534–541. doi: 10.1128/aac.38.3.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy S. B. Evolution and spread of tetracycline resistance determinants. J Antimicrob Chemother. 1989 Jul;24(1):1–3. doi: 10.1093/jac/24.1.1. [DOI] [PubMed] [Google Scholar]
- Levy S. B., McMurry L. M., Burdett V., Courvalin P., Hillen W., Roberts M. C., Taylor D. E. Nomenclature for tetracycline resistance determinants. Antimicrob Agents Chemother. 1989 Aug;33(8):1373–1374. doi: 10.1128/aac.33.8.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salyers A. A., Speer B. S., Shoemaker N. B. New perspectives in tetracycline resistance. Mol Microbiol. 1990 Jan;4(1):151–156. doi: 10.1111/j.1365-2958.1990.tb02025.x. [DOI] [PubMed] [Google Scholar]
- Speer B. S., Shoemaker N. B., Salyers A. A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 1992 Oct;5(4):387–399. doi: 10.1128/cmr.5.4.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sum P. E., Lee V. J., Testa R. T., Hlavka J. J., Ellestad G. A., Bloom J. D., Gluzman Y., Tally F. P. Glycylcyclines. 1. A new generation of potent antibacterial agents through modification of 9-aminotetracyclines. J Med Chem. 1994 Jan 7;37(1):184–188. doi: 10.1021/jm00027a023. [DOI] [PubMed] [Google Scholar]
- Testa R. T., Petersen P. J., Jacobus N. V., Sum P. E., Lee V. J., Tally F. P. In vitro and in vivo antibacterial activities of the glycylcyclines, a new class of semisynthetic tetracyclines. Antimicrob Agents Chemother. 1993 Nov;37(11):2270–2277. doi: 10.1128/aac.37.11.2270. [DOI] [PMC free article] [PubMed] [Google Scholar]