Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 Oct;38(10):2380–2386. doi: 10.1128/aac.38.10.2380

Characterization of rifampin-resistance in pathogenic mycobacteria.

D L Williams 1, C Waguespack 1, K Eisenach 1, J T Crawford 1, F Portaels 1, M Salfinger 1, C M Nolan 1, C Abe 1, V Sticht-Groh 1, T P Gillis 1
PMCID: PMC284748  PMID: 7840574

Abstract

The emergence of rifampin-resistant strains of pathogenic mycobacteria has threatened the usefulness of this drug in treating mycobacterial diseases. Critical to the treatment of individuals infected with resistant strains is the rapid identification of these strains directly from clinical specimens. It has been shown that resistance to rifampin in Mycobacterium tuberculosis and Mycobacterium leprae apparently involves mutations in the rpoB gene encoding the beta-subunit of the RNA polymerases of these species. DNA sequences were obtained from a 305-bp fragment of the rpoB gene from 110 rifampin-resistant and 10 rifampin-susceptible strains of M. tuberculosis from diverse geographical regions throughout the world. In 102 of 110 rifampin-resistant strains 16 mutations affecting 13 amino acids were observed. No mutations were observed in rifampin-susceptible strains. No association was found between particular mutations in the rpoB gene and drug susceptibility patterns of multidrug-resistant M. tuberculosis strains. Drug-resistant M. tuberculosis strains from the same outbreak and exhibiting the same IS6110 DNA fingerprint and drug susceptibility pattern contained the same mutation in the rpoB gene. However, mutations are not correlated with IS6110 profiling outside of epidemics. The evolution of rifampin resistance as a consequence of mutations in the rpoB gene was documented in a patient who developed rifampin resistance during the course of treatment. Rifampin-resistant strains of M. leprae, Mycobacterium avium, and Mycobacterium africanum contained mutations in the rpoB gene similar to that documented for M. tuberculosis. This information served as the basis for developing a rapid DNA diagnostic assay (PCR-heteroduplex formation) for the detection of rifampin susceptibility of M. tuberculosis.

Full text

PDF
2380

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cave M. D., Eisenach K. D., McDermott P. F., Bates J. H., Crawford J. T. IS6110: conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes. 1991 Feb;5(1):73–80. doi: 10.1016/0890-8508(91)90040-q. [DOI] [PubMed] [Google Scholar]
  2. Cave M. D., Eisenach K. D., Templeton G., Salfinger M., Mazurek G., Bates J. H., Crawford J. T. Stability of DNA fingerprint pattern produced with IS6110 in strains of Mycobacterium tuberculosis. J Clin Microbiol. 1994 Jan;32(1):262–266. doi: 10.1128/jcm.32.1.262-266.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Frieden T. R., Sterling T., Pablos-Mendez A., Kilburn J. O., Cauthen G. M., Dooley S. W. The emergence of drug-resistant tuberculosis in New York City. N Engl J Med. 1993 Feb 25;328(8):521–526. doi: 10.1056/NEJM199302253280801. [DOI] [PubMed] [Google Scholar]
  4. Goble M., Iseman M. D., Madsen L. A., Waite D., Ackerson L., Horsburgh C. R., Jr Treatment of 171 patients with pulmonary tuberculosis resistant to isoniazid and rifampin. N Engl J Med. 1993 Feb 25;328(8):527–532. doi: 10.1056/NEJM199302253280802. [DOI] [PubMed] [Google Scholar]
  5. Grosset J. H., Guelpa-Lauras C. C., Bobin P., Brucker G., Cartel J. L., Constant-Desportes M., Flageul B., Frédéric M., Guillaume J. C., Millan J. Study of 39 documented relapses of multibacillary leprosy after treatment with rifampin. Int J Lepr Other Mycobact Dis. 1989 Sep;57(3):607–614. [PubMed] [Google Scholar]
  6. Honore N., Cole S. T. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother. 1993 Mar;37(3):414–418. doi: 10.1128/aac.37.3.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Honoré N., Bergh S., Chanteau S., Doucet-Populaire F., Eiglmeier K., Garnier T., Georges C., Launois P., Limpaiboon T., Newton S. Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: structure and function of the Rif-Str regions. Mol Microbiol. 1993 Jan;7(2):207–214. doi: 10.1111/j.1365-2958.1993.tb01112.x. [DOI] [PubMed] [Google Scholar]
  8. Hui J., Gordon N., Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother. 1977 May;11(5):773–779. doi: 10.1128/aac.11.5.773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jin D. J., Gross C. A. Characterization of the pleiotropic phenotypes of rifampin-resistant rpoB mutants of Escherichia coli. J Bacteriol. 1989 Sep;171(9):5229–5231. doi: 10.1128/jb.171.9.5229-5231.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jin D. J., Gross C. A. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol. 1988 Jul 5;202(1):45–58. doi: 10.1016/0022-2836(88)90517-7. [DOI] [PubMed] [Google Scholar]
  11. KUBICA G. P., DYE W. E., COHN M. L., MIDDLEBROOK G. Sputum digestion and decontamination with N-acetyl-L-cysteine-sodium hydroxide for culture of mycobacteria. Am Rev Respir Dis. 1963 May;87:775–779. doi: 10.1164/arrd.1963.87.5.775. [DOI] [PubMed] [Google Scholar]
  12. Kapur V., Li L. L., Iordanescu S., Hamrick M. R., Wanger A., Kreiswirth B. N., Musser J. M. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol. 1994 Apr;32(4):1095–1098. doi: 10.1128/jcm.32.4.1095-1098.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Konno K., Oizumi K., Oka S. Mode of action of rifampin on mycobacteria. II. Biosynthetic studies on the inhibition of ribonucleic acid polymerase of Mycobacterium bovis BCG by rifampin and uptake of rifampin- 14 C by Mycobacterium phlei. Am Rev Respir Dis. 1973 Jun;107(6):1006–1012. doi: 10.1164/arrd.1973.107.6.1006. [DOI] [PubMed] [Google Scholar]
  14. Levin M. E., Hatfull G. F. Mycobacterium smegmatis RNA polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol. 1993 Apr;8(2):277–285. doi: 10.1111/j.1365-2958.1993.tb01572.x. [DOI] [PubMed] [Google Scholar]
  15. Miller L. P., Crawford J. T., Shinnick T. M. The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother. 1994 Apr;38(4):805–811. doi: 10.1128/aac.38.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moudgil K. D., Williams D. L., Gillis T. P. DNA hybridization analysis of mycobacterial DNA using the 18-kDa protein gene of Mycobacterium leprae. FEMS Microbiol Immunol. 1992 Feb;4(3):165–174. doi: 10.1111/j.1574-6968.1992.tb04983.x. [DOI] [PubMed] [Google Scholar]
  17. Nardell E., McInnis B., Thomas B., Weidhaas S. Exogenous reinfection with tuberculosis in a shelter for the homeless. N Engl J Med. 1986 Dec 18;315(25):1570–1575. doi: 10.1056/NEJM198612183152502. [DOI] [PubMed] [Google Scholar]
  18. Orita M., Iwahana H., Kanazawa H., Hayashi K., Sekiya T. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2766–2770. doi: 10.1073/pnas.86.8.2766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prior T. W., Papp A. C., Snyder P. J., Burghes A. H., Sedra M. S., Western L. M., Bartello C., Mendell J. R. Identification of two point mutations and a one base deletion in exon 19 of the dystrophin gene by heteroduplex formation. Hum Mol Genet. 1993 Mar;2(3):311–313. doi: 10.1093/hmg/2.3.311. [DOI] [PubMed] [Google Scholar]
  20. Stappaerts I., Portaels F., Van Schil L. Long-term follow-up of pulmonary disease caused by Mycobacterium avium in a previously healthy patient. Acta Clin Belg. 1993;48(3):202–208. doi: 10.1080/17843286.1993.11718308. [DOI] [PubMed] [Google Scholar]
  21. Steiner P., Rao M., Mitchell M., Steiner M. Primary drug-resistant tuberculosis in children. Emergence of primary drug-resistant strains of M. tuberculosis to rifampin. Am Rev Respir Dis. 1986 Sep;134(3):446–448. doi: 10.1164/arrd.1986.134.3.446. [DOI] [PubMed] [Google Scholar]
  22. Stottmeier K. D. Emergence of rifampin-resistant Mycobacterium tuberculosis in Massachusetts. J Infect Dis. 1976 Jan;133(1):88–90. doi: 10.1093/infdis/133.1.88. [DOI] [PubMed] [Google Scholar]
  23. Telenti A., Imboden P., Marchesi F., Lowrie D., Cole S., Colston M. J., Matter L., Schopfer K., Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet. 1993 Mar 13;341(8846):647–650. doi: 10.1016/0140-6736(93)90417-f. [DOI] [PubMed] [Google Scholar]
  24. Telenti A., Imboden P., Marchesi F., Schmidheini T., Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother. 1993 Oct;37(10):2054–2058. doi: 10.1128/aac.37.10.2054. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. White M. B., Carvalho M., Derse D., O'Brien S. J., Dean M. Detecting single base substitutions as heteroduplex polymorphisms. Genomics. 1992 Feb;12(2):301–306. doi: 10.1016/0888-7543(92)90377-5. [DOI] [PubMed] [Google Scholar]
  26. Williams D. L., Gillis T. P., Fiallo P., Job C. K., Gelber R. H., Hill C., Izumi S. Detection of Mycobacterium leprae and the potential for monitoring antileprosy drug therapy directly from skin biopsies by PCR. Mol Cell Probes. 1992 Oct;6(5):401–410. doi: 10.1016/0890-8508(92)90034-u. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES