Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1994 Oct;38(10):2398–2403. doi: 10.1128/aac.38.10.2398

Comparison of rates of intracellular metabolism of zidovudine in human and primate peripheral blood mononuclear cells.

M Qian 1, G Chandrasena 1, R J Ho 1, J D Unadkat 1
PMCID: PMC284751  PMID: 7840577

Abstract

3'-Azido-3'-deoxythymidine (AZT) is a drug of choice for the treatment of AIDS. On the basis of pharmacokinetic data, the nonhuman primate Macaca nemestrina has been shown to be a suitable animal model for use in the study of the disposition of AZT. However, since AZT is activated to its metabolite, the AZT triphosphate (AZTTP), intracellularly, we investigated the intracellular activation of AZT in peripheral blood mononuclear cells (PBMCs) of healthy and simian immunodeficiency virus-infected macaques and compared it with that in PBMCs obtained from human volunteers. At 5 microM extracellular AZT, both human and macaque PBMCs rapidly convert AZT to AZT monophosphate (AZTMP) (84% of total phosphorylated products) in 4 h. Increases in AZTMP levels of 7.7- and 12-fold were observed in human and macaque PBMCs, respectively, when the extracellular AZT concentration increased from 0.45 to 14.4 microM. Similar ratios of AZT metabolites, AZT diphosphate (AZTDP)/AZTTP (0.7 to 1.4), AZTMP/AZTDP (3 to 14), and AZTMP/AZTTP (3 to 19), over the same AZT concentration range were observed in both human and macaque PBMCs, suggesting that these cells have similar capacities to phosphorylate AZT. Simian immunodeficiency virus-infected macaque PBMCs showed a fivefold increase in intracellular AZT and AZTMP levels and a twofold increase in AZTDP and AZTTP levels (picomoles per 10(7) cells) when compared with those in the uninfected cells (at 4 h with 0.9 microM extracellular concentration). This increase in AZT metabolite levels has also been reported for human immunodeficiency virus-infected PBMCs. Collectively, given the similarities in phosphorylation profiles between healthy and infected human and macaque PBMCs, we conclude that the macaque is a suitable animal model for use in the study of factors that can effect the in vivo phosphorylation of AZT.

Full text

PDF
2398

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnér E. S., Valentin A., Eriksson S. Thymidine and 3'-azido-3'-deoxythymidine metabolism in human peripheral blood lymphocytes and monocyte-derived macrophages. A study of both anabolic and catabolic pathways. J Biol Chem. 1992 Jun 5;267(16):10968–10975. [PubMed] [Google Scholar]
  2. Avramis V. I., Markson W., Jackson R. L., Gomperts E. Biochemical pharmacology of zidovudine in human T-lymphoblastoid cells (CEM). AIDS. 1989 Jul;3(7):417–422. doi: 10.1097/00002030-198907000-00002. [DOI] [PubMed] [Google Scholar]
  3. Balzarini J., Herdewijn P., De Clercq E. Differential patterns of intracellular metabolism of 2',3'-didehydro-2',3'-dideoxythymidine and 3'-azido-2',3'-dideoxythymidine, two potent anti-human immunodeficiency virus compounds. J Biol Chem. 1989 Apr 15;264(11):6127–6133. [PubMed] [Google Scholar]
  4. Balzarini J., Pauwels R., Baba M., Herdewijn P., de Clercq E., Broder S., Johns D. G. The in vitro and in vivo anti-retrovirus activity, and intracellular metabolism of 3'-azido-2',3'-dideoxythymidine and 2',3'-dideoxycytidine are highly dependent on the cell species. Biochem Pharmacol. 1988 Mar 1;37(5):897–903. doi: 10.1016/0006-2952(88)90178-5. [DOI] [PubMed] [Google Scholar]
  5. Cheng Y. C., Dutschman G. E., Bastow K. F., Sarngadharan M. G., Ting R. Y. Human immunodeficiency virus reverse transcriptase. General properties and its interactions with nucleoside triphosphate analogs. J Biol Chem. 1987 Feb 15;262(5):2187–2189. [PubMed] [Google Scholar]
  6. Copeland W. C., Chen M. S., Wang T. S. Human DNA polymerases alpha and beta are able to incorporate anti-HIV deoxynucleotides into DNA. J Biol Chem. 1992 Oct 25;267(30):21459–21464. [PubMed] [Google Scholar]
  7. Frick L. W., Nelson D. J., St Clair M. H., Furman P. A., Krenitsky T. A. Effects of 3'-azido-3'-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem Biophys Res Commun. 1988 Jul 15;154(1):124–129. doi: 10.1016/0006-291x(88)90659-6. [DOI] [PubMed] [Google Scholar]
  8. Fridland A., Connelly M. C., Ashmun R. Relationship of deoxynucleotide changes to inhibition of DNA synthesis induced by the antiretroviral agent 3'-azido-3'-deoxythymidine and release of its monophosphate by human lymphoid cells (CCRF-CEM). Mol Pharmacol. 1990 May;37(5):665–670. [PubMed] [Google Scholar]
  9. Furman P. A., Fyfe J. A., St Clair M. H., Weinhold K., Rideout J. L., Freeman G. A., Lehrman S. N., Bolognesi D. P., Broder S., Mitsuya H. Phosphorylation of 3'-azido-3'-deoxythymidine and selective interaction of the 5'-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8333–8337. doi: 10.1073/pnas.83.21.8333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ha J. C., Nosbisch C., Conrad S. H., Ruppenthal G. C., Sackett G. P., Abkowitz J., Unadkat J. D. Fetal toxicity of zidovudine (azidothymidine) in Macaca nemestrina: preliminary observations. J Acquir Immune Defic Syndr. 1994 Feb;7(2):154–157. [PubMed] [Google Scholar]
  11. Ho H. T., Hitchcock M. J. Cellular pharmacology of 2',3'-dideoxy-2',3'-didehydrothymidine, a nucleoside analog active against human immunodeficiency virus. Antimicrob Agents Chemother. 1989 Jun;33(6):844–849. doi: 10.1128/aac.33.6.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang P., Farquhar D., Plunkett W. Selective action of 3'-azido-3'-deoxythymidine 5'-triphosphate on viral reverse transcriptases and human DNA polymerases. J Biol Chem. 1990 Jul 15;265(20):11914–11918. [PubMed] [Google Scholar]
  13. Jahn S., Volk H. D., Schäfer H., Kiessig S. T., Grunow R., von Baehr R. Influence of hydroxyurea on lectin-induced early and late events in peripheral blood lymphocyte cultures. Folia Biol (Praha) 1987;33(3):154–165. [PubMed] [Google Scholar]
  14. Kuster H., Vogt M., Joos B., Nadai V., Lüthy R. A method for the quantification of intracellular zidovudine nucleotides. J Infect Dis. 1991 Oct;164(4):773–776. doi: 10.1093/infdis/164.4.773. [DOI] [PubMed] [Google Scholar]
  15. Lopez-Anaya A., Unadkat J. D., Schumann L. A., Smith A. L. Pharmacokinetics of zidovudine (azidothymidine). I. Transplacental transfer. J Acquir Immune Defic Syndr. 1990;3(10):959–964. [PubMed] [Google Scholar]
  16. Lopez-Anaya A., Unadkat J. D., Schumann L. A., Smith A. L. Pharmacokinetics of zidovudine (azidothymidine). II. Development of metabolic and renal clearance pathways in the neonate. J Acquir Immune Defic Syndr. 1990;3(11):1052–1058. [PubMed] [Google Scholar]
  17. Lopez-Anaya A., Unadkat J. D., Schumann L. A., Smith A. L. Pharmacokinetics of zidovudine (azidothymidine). III. Effect of pregnancy. J Acquir Immune Defic Syndr. 1991;4(1):64–68. [PubMed] [Google Scholar]
  18. Luciw P. A., Shaw K. E., Unger R. E., Planelles V., Stout M. W., Lackner J. E., Pratt-Lowe E., Leung N. J., Banapour B., Marthas M. L. Genetic and biological comparisons of pathogenic and nonpathogenic molecular clones of simian immunodeficiency virus (SIVmac). AIDS Res Hum Retroviruses. 1992 Mar;8(3):395–402. doi: 10.1089/aid.1992.8.395. [DOI] [PubMed] [Google Scholar]
  19. McClure H. M., Anderson D. C., Ansari A. A., Fultz P. N., Klumpp S. A., Schinazi R. F. Nonhuman primate models for evaluation of AIDS therapy. Ann N Y Acad Sci. 1990;616:287–298. doi: 10.1111/j.1749-6632.1990.tb17849.x. [DOI] [PubMed] [Google Scholar]
  20. Naidu Y. M., Kestler H. W., 3rd, Li Y., Butler C. V., Silva D. P., Schmidt D. K., Troup C. D., Sehgal P. K., Sonigo P., Daniel M. D. Characterization of infectious molecular clones of simian immunodeficiency virus (SIVmac) and human immunodeficiency virus type 2: persistent infection of rhesus monkeys with molecularly cloned SIVmac. J Virol. 1988 Dec;62(12):4691–4696. doi: 10.1128/jvi.62.12.4691-4696.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pons J. C., Taburet A. M., Singlas E., Delfraissy J. F., Papiernik E. Placental passage of azathiothymidine (AZT) during the second trimester of pregnancy: study by direct fetal blood sampling under ultrasound. Eur J Obstet Gynecol Reprod Biol. 1991 Jul 25;40(3):229–231. doi: 10.1016/0028-2243(91)90122-2. [DOI] [PubMed] [Google Scholar]
  22. Poulton T. A., Gallagher A., Potts R. C., Beck J. S. Changes in activation markers and cell membrane receptors on human peripheral blood T lymphocytes during cell cycle progression after PHA stimulation. Immunology. 1988 Jul;64(3):419–425. [PMC free article] [PubMed] [Google Scholar]
  23. Qian M., Bui T., Ho R. J., Unadkat J. D. Metabolism of 3'-azido-3'-deoxythymidine (AZT) in human placental trophoblasts and Hofbauer cells. Biochem Pharmacol. 1994 Jul 19;48(2):383–389. doi: 10.1016/0006-2952(94)90111-2. [DOI] [PubMed] [Google Scholar]
  24. Ravasco R. J., Unadkat J. D., Tsai C. C., Nosbisch C. Pharmacokinetics of dideoxyinosine in pigtailed macaques (Macaca nemestrina) after intravenous and subcutaneous administration. J Acquir Immune Defic Syndr. 1992 Oct;5(10):1016–1018. [PubMed] [Google Scholar]
  25. Slusher J. T., Kuwahara S. K., Hamzeh F. M., Lewis L. D., Kornhauser D. M., Lietman P. S. Intracellular zidovudine (ZDV) and ZDV phosphates as measured by a validated combined high-pressure liquid chromatography-radioimmunoassay procedure. Antimicrob Agents Chemother. 1992 Nov;36(11):2473–2477. doi: 10.1128/aac.36.11.2473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. St Clair M. H., Richards C. A., Spector T., Weinhold K. J., Miller W. H., Langlois A. J., Furman P. A. 3'-Azido-3'-deoxythymidine triphosphate as an inhibitor and substrate of purified human immunodeficiency virus reverse transcriptase. Antimicrob Agents Chemother. 1987 Dec;31(12):1972–1977. doi: 10.1128/aac.31.12.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stretcher B. N., Pesce A. J., Wermeling J. R., Hurtubise P. E. In vitro measurement of phosphorylated zidovudine in peripheral blood leucocytes. Ther Drug Monit. 1990 Sep;12(5):481–489. doi: 10.1097/00007691-199009000-00013. [DOI] [PubMed] [Google Scholar]
  28. Toyoshima T., Kimura S., Muramatsu S., Takahagi H., Shimada K. A sensitive nonisotopic method for the determination of intracellular azidothymidine 5'-mono-, 5'-di-, and 5'-triphosphate. Anal Biochem. 1991 Aug 1;196(2):302–307. doi: 10.1016/0003-2697(91)90470-e. [DOI] [PubMed] [Google Scholar]
  29. Tsai C. C., Follis K. E., Grant R. F., Nolte R. E., Bartz C. R., Benveniste R. E., Sager P. R. Effect of dosing frequency on ZDV prophylaxis in macaques infected with simian immunodeficiency virus. J Acquir Immune Defic Syndr. 1993 Oct;6(10):1086–1092. [PubMed] [Google Scholar]
  30. Törnevik Y., Jacobsson B., Britton S., Eriksson S. Intracellular metabolism of 3'-azidothymidine in isolated human peripheral blood mononuclear cells. AIDS Res Hum Retroviruses. 1991 Sep;7(9):751–759. doi: 10.1089/aid.1991.7.751. [DOI] [PubMed] [Google Scholar]
  31. Watts D. H., Brown Z. A., Tartaglione T., Burchett S. K., Opheim K., Coombs R., Corey L. Pharmacokinetic disposition of zidovudine during pregnancy. J Infect Dis. 1991 Feb;163(2):226–232. doi: 10.1093/infdis/163.2.226. [DOI] [PubMed] [Google Scholar]
  32. Wyand M. S. The use of SIV-infected rhesus monkeys for the preclinical evaluation of AIDS drugs and vaccines. AIDS Res Hum Retroviruses. 1992 Mar;8(3):349–356. doi: 10.1089/aid.1992.8.349. [DOI] [PubMed] [Google Scholar]
  33. Yarchoan R., Mitsuya H., Myers C. E., Broder S. Clinical pharmacology of 3'-azido-2',3'-dideoxythymidine (zidovudine) and related dideoxynucleosides. N Engl J Med. 1989 Sep 14;321(11):726–738. doi: 10.1056/NEJM198909143211106. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES