Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 May;98(2):341–346. doi: 10.1128/jb.98.2.341-346.1969

Dextran-induced Agglutination of Streptococcus mutans, and Its Potential Role in the Formation of Microbial Dental Plaques

R J Gibbons 1, R J Fitzgerald 2
PMCID: PMC284819  PMID: 5784196

Abstract

Glucose-grown washed cells of streptococci similar to Streptococcus mutans, which contain cell-bound dextransucrase, have been observed to agglutinate upon the addition of high molecular weight dextran. Low molecular weight dextran or unrelated polysaccharides were ineffective. Agglutination also occurred upon addition of sucrose, which can be converted into dextran, but not with other mono- and disaccharides. Other bacteria, including species capable of synthesizing dextrans, were not observed to exhibit this phenomenon. Cells of S. mutans agglutinated upon addition of dextran over a wide pH range, but maximal sensitivity to dextran occurred at pH 8.5. At this pH, such cells can be used for a simple, specific, and exquisitely sensitive qualitative assay for high molecular weight dextran, for addition of 6 ng of dextran with a molecular weight of 2 × 106 (i.e., approximately three molecules per cell) caused detectable agglutination. High concentrations of glucose, levan, and dextran of molecular weight of 2 × 104 inhibited the reaction. Fluorescein-labeled cells of S. mutans were observed to adhere to dextran-containing plaques and dextran-treated teeth, suggesting that this phenomenon may be of importance in the formation of streptococcal dental plaques. The mechanism responsible for dextraninduced agglutination appears to involve the affinity of a receptor site, possibly dextransucrase, on the surface of several cells for common dextran molecules.

Full text

PDF
341

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackstock R., Hyde R. M., Kelly F. C. Inhibition of fibrinogen reaction by polysaccharide of encapsulated Staphylococcus aureus. J Bacteriol. 1968 Sep;96(3):799–803. doi: 10.1128/jb.96.3.799-803.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carlsson J. A numerical taxonomic study of human oral streptococci. Odontol Revy. 1968;19(2):137–160. [PubMed] [Google Scholar]
  3. Critchley P., Wood J. M., Saxton C. A., Leach S. A. The polymerisation of dietary sugars by dental plaque. Caries Res. 1967;1(2):112–129. doi: 10.1159/000259506. [DOI] [PubMed] [Google Scholar]
  4. Ebert K. H., Schenk G. Mechanisms of biopolymer growth: the formation of dextran and levan. Adv Enzymol Relat Areas Mol Biol. 1968;30:179–221. doi: 10.1002/9780470122754.ch4. [DOI] [PubMed] [Google Scholar]
  5. Edwardsson S. Characteristics of caries-inducing human streptococci resembling Streptococcus mutans. Arch Oral Biol. 1968 Jun;13(6):637–646. doi: 10.1016/0003-9969(68)90142-8. [DOI] [PubMed] [Google Scholar]
  6. FITZGERALD R. J., JORDAN H. V., STANLEY H. R. Experimental caries and gingival pathologic changes in the gnotobiotic rat. J Dent Res. 1960 Sep-Oct;39:923–935. doi: 10.1177/00220345600390052701. [DOI] [PubMed] [Google Scholar]
  7. FITZGERALD R. J., KEYES P. H. Demonstration of the etiologic role of streptococci in experimental caries in the hamster. J Am Dent Assoc. 1960 Jul;61:9–19. doi: 10.14219/jada.archive.1960.0138. [DOI] [PubMed] [Google Scholar]
  8. Gibbons R. J., Banghart S. B. Synthesis of extracellular dextran by cariogenic bacteria and its presence in human dental plaque. Arch Oral Biol. 1967 Jan;12(1):11–23. doi: 10.1016/0003-9969(67)90137-9. [DOI] [PubMed] [Google Scholar]
  9. Gibbons R. J., Banghart S. Induction of dental caries in gnotobiotic rats with a levan-forming streptococcus and a streptococcus isolated from subacute bacterial endocarditis. Arch Oral Biol. 1968 Mar;13(3):297–308. doi: 10.1016/0003-9969(68)90128-3. [DOI] [PubMed] [Google Scholar]
  10. Gibbons R. J., Berman K. S., Knoettner P., Kapsimalis B. Dental caries and alveolar bone loss in gnotobiotic rats infected with capsule forming streptococci of human origin. Arch Oral Biol. 1966 Jun;11(6):549–560. doi: 10.1016/0003-9969(66)90220-2. [DOI] [PubMed] [Google Scholar]
  11. Gibbons R. J. Formation and significance of bacterial polysaccharides in caries etiology. Caries Res. 1968;2(2):164–171. doi: 10.1159/000259554. [DOI] [PubMed] [Google Scholar]
  12. Gibbons R. J., Nygaard M. Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol. 1968 Oct;13(10):1249–1262. doi: 10.1016/0003-9969(68)90081-2. [DOI] [PubMed] [Google Scholar]
  13. Guggenheim B., Schroeder H. E. Biochemical and morphological aspects of extracellular polysaccharides produced by cariogenic streptococci. Helv Odontol Acta. 1967 Oct;11(2):131–152. [PubMed] [Google Scholar]
  14. Keyes P. H. Research in dental caries. J Am Dent Assoc. 1968 Jun;76(6):1357–1373. doi: 10.14219/jada.archive.1968.0186. [DOI] [PubMed] [Google Scholar]
  15. McCabe R. M., Keyes P. H., Howell A., Jr An in vitro method for assessing the plaque forming ability of oral bacteria. Arch Oral Biol. 1967 Dec;12(12):1653–1656. doi: 10.1016/0003-9969(67)90200-2. [DOI] [PubMed] [Google Scholar]
  16. NEELY W. B. Dextran: structure and synthesis. Adv Carbohydr Chem. 1960;15:341–369. doi: 10.1016/s0096-5332(08)60191-5. [DOI] [PubMed] [Google Scholar]
  17. TSUCHIYA H. M. Dextransucrase. Bull Soc Chim Biol (Paris) 1960;42:1777–1788. [PubMed] [Google Scholar]
  18. ZINNER D. D., JABLON J. M., ARAN A. P., SASLAW M. S. EXPERIMENTAL CARIES INDUCED IN ANIMALS BY STREPTOCOCCI OF HUMAN ORIGIN. Proc Soc Exp Biol Med. 1965 Mar;118:766–770. doi: 10.3181/00379727-118-29964. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES