Abstract
Four distinct genetic groups of leptospiras were demonstrated among selected pathogenic and “biflexa” serological types. Pathogenic leptospiras could be divided into two groups on the basis of per cent guanine + cytosine (GC) in their deoxyribonucleic acid (DNA). One group had 36 ± 1%, the other 39 ± 1%. The biflexa strains had DNA of 39 ± 1% GC, but were further separated into two groups on the basis of DNA-annealing tests. Strains within groups had a high degree of specific duplex formation (75% binding or more with reference to the homologous DNA). There was little or no genetic relatedness between strains of the four groups (less than 10% DNA homology). The thermal elution midpoint of heterologous DNA duplexes was always lower than the homologous reaction. The serological relationships among strains were not meaningful in terms of relatedness determined by specific duplex formation.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALEXANDER A., EVANS L. B., JEFFRIES H., GLEISER C. A., YAGER R. H. Serologic characterization of the Fort Bragg leptospire. Proc Soc Exp Biol Med. 1954 Jun;86(2):405–408. doi: 10.3181/00379727-86-21115. [DOI] [PubMed] [Google Scholar]
- BABUDIERI B., DYMOWSKA Z. [Studies on a Polish strain of Leptospira of the serogroup "Semaranga"]. Zentralbl Bakteriol. 1961 May;182:129–134. [PubMed] [Google Scholar]
- BAUTZ E. K., BAUTZ F. A. THE INFLUENCE OF NONCOMPLEMENTARY BASES ON THE STABILITY OF ORDERED POLYNUCLEOTIDES. Proc Natl Acad Sci U S A. 1964 Dec;52:1476–1481. doi: 10.1073/pnas.52.6.1476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BOLTON E. T., MCCARTHY B. J. FRACTIONATION OF COMPLEMENTARY RNA. J Mol Biol. 1964 Feb;8:201–209. doi: 10.1016/s0022-2836(64)80129-7. [DOI] [PubMed] [Google Scholar]
- BOLTON E. T., McCARTHY B. J. A general method for the isolation of RNA complementary to DNA. Proc Natl Acad Sci U S A. 1962 Aug;48:1390–1397. doi: 10.1073/pnas.48.8.1390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURGI E., HERSHEY A. D. Sedimentation rate as a measure of molecular weight of DNA. Biophys J. 1963 Jul;3:309–321. doi: 10.1016/s0006-3495(63)86823-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner D. J., Cowie D. B. Thermal stability of Escherichia coli-Salmonella typhimurium deoxyribocleic acid duplexes. J Bacteriol. 1968 Jun;95(6):2258–2262. doi: 10.1128/jb.95.6.2258-2262.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CROTHERS D. M., KALLENBACH N. R., ZIMM B. H. THE MELTING TRANSITION OF LOW-MOLECULAR-WEIGHT DNA: THEORY AND EXPERIMENT. J Mol Biol. 1965 Apr;11:802–820. doi: 10.1016/s0022-2836(65)80037-7. [DOI] [PubMed] [Google Scholar]
- DEVOE H., TINOCO I., Jr The stability of helical polynucleotides: base contributions. J Mol Biol. 1962 Jun;4:500–517. doi: 10.1016/s0022-2836(62)80105-3. [DOI] [PubMed] [Google Scholar]
- DOI R. H., IGARASHI R. T. CONSERVATION OF RIBOSOMAL AND MESSENGER RIBONUCLEIC ACID CISTRONS IN BACILLUS SPECIES. J Bacteriol. 1965 Aug;90:384–390. doi: 10.1128/jb.90.2.384-390.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubnau D., Smith I., Morell P., Marmur J. Gene conservation in Bacillus species. I. Conserved genetic and nucleic acid base sequence homologies. Proc Natl Acad Sci U S A. 1965 Aug;54(2):491–498. doi: 10.1073/pnas.54.2.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eigner J., Doty P. The native, denatured and renatured states of deoxyribonucleic acid. J Mol Biol. 1965 Jul;12(3):549–580. doi: 10.1016/s0022-2836(65)80312-6. [DOI] [PubMed] [Google Scholar]
- FUZI M., CSOKA R. An egg-yolk reaction test for the differentiation of Leptospirae. J Pathol Bacteriol. 1961 Jul;82:208–212. doi: 10.1002/path.1700820129. [DOI] [PubMed] [Google Scholar]
- Falkow S., Rownd R., Baron L. S. GENETIC HOMOLOGY BETWEEN ESCHERICHIA COLI K-12 AND SALMONELLA. J Bacteriol. 1962 Dec;84(6):1303–1312. doi: 10.1128/jb.84.6.1303-1312.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HYER B. H., MCCARTHY B. J., BOLTON E. T. A MOLECULAR APPROACH IN THE SYSTEMATICS OF HIGHER ORGANISMS. DNA INTERACTIONS PROVIDE A BASIS FOR DETECTING COMMON POLYNUCLEOTIDE SEQUENCES AMONG DIVERSE ORGANISMS. Science. 1964 May 22;144(3621):959–967. doi: 10.1126/science.144.3621.959. [DOI] [PubMed] [Google Scholar]
- JOHNSON R. C., GARY N. D. Nutrition of Leptospira pomona. 1. A chemically defined substitute for rabbit serum ultrafiltrate. J Bacteriol. 1962 Mar;83:668–672. doi: 10.1128/jb.83.3.668-672.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. C., Harris V. G. Differentiation of pathogenic and saprophytic letospires. I. Growth at low temperatures. J Bacteriol. 1967 Jul;94(1):27–31. doi: 10.1128/jb.94.1.27-31.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson R. C., Harris V. G. Purine analogue sensitivity and lipase activity of leptospires. Appl Microbiol. 1968 Oct;16(10):1584–1590. doi: 10.1128/am.16.10.1584-1590.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KMETY E., BAKOSS P. [Hemolysin and lipase production in Leptospira of different serotypes]. Zentralbl Bakteriol. 1961 Apr;181:503–515. [PubMed] [Google Scholar]
- KMETY E. Factor analysis of Leptospira strains of the javanica and celledoni serogroups. J Hyg Epidemiol Microbiol Immunol. 1963;7:225–239. [PubMed] [Google Scholar]
- Kmety E., Plesko I., Bakoss P., Chorvath B. Evaluation of methods for differentiating pathogenic and saprophytic leptospira strains. Ann Soc Belges Med Trop Parasitol Mycol. 1966;46(1):111–122. [PubMed] [Google Scholar]
- LIPSETT M. N., HEPPEP L. A., BRADLEY D. F. Complex formation between oligonucleotides and polymers. J Biol Chem. 1961 Mar;236:857–863. [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- MARMUR J., FALKOW S., MANDEL M. NEW APPROACHES TO BACTERIAL TAXONOMY. Annu Rev Microbiol. 1963;17:329–372. doi: 10.1146/annurev.mi.17.100163.001553. [DOI] [PubMed] [Google Scholar]
- MCCARTHY B. J., BOLTON E. T. An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U S A. 1963 Jul;50:156–164. doi: 10.1073/pnas.50.1.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCCARTHY B. J., BOLTON E. T. INTERACTION OF COMPLEMENTARY RNA AND DNA. J Mol Biol. 1964 Feb;8:184–200. doi: 10.1016/s0022-2836(64)80128-5. [DOI] [PubMed] [Google Scholar]
- MIYAZAWA Y., THOMAS C. A., Jr NUCLEOTIDE COMPOSITION OF SHORT SEGMENTS OF DNA MOLECULES. J Mol Biol. 1965 Feb;11:223–237. doi: 10.1016/s0022-2836(65)80053-5. [DOI] [PubMed] [Google Scholar]
- Martin M. A., Hoyer B. H. Thermal stabilities and species specificities of reannealed animal deoxyribonucleic acids. Biochemistry. 1966 Aug;5(8):2706–2713. doi: 10.1021/bi00872a030. [DOI] [PubMed] [Google Scholar]
- Naylor R., Gilham P. T. Studies on some interactions and reactions of oligonucleotides in aqueous solution. Biochemistry. 1966 Aug;5(8):2722–2728. doi: 10.1021/bi00872a032. [DOI] [PubMed] [Google Scholar]
- Niyogi S. K., Thomas C. A., Jr The specific association of ribooligonucleotides of known chain length with denatured DNA. Biochem Biophys Res Commun. 1967 Jan 10;26(1):51–57. doi: 10.1016/0006-291x(67)90251-3. [DOI] [PubMed] [Google Scholar]
- SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
- SCHNEIDER H., FALKOW S. CHARACTERIZATION OF AN HFR STRAIN OF SHIGELLA FLEXNERI. J Bacteriol. 1964 Sep;88:682–689. doi: 10.1128/jb.88.3.682-689.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
