Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1969 May;98(2):705–711. doi: 10.1128/jb.98.2.705-711.1969

Malate Utilization by a Group D Streptococcus: Physiological Properties and Purification of an Inducible Malic Enzyme

Jack London 1, Eleanor Y Meyer 1
PMCID: PMC284875  PMID: 4306540

Abstract

Growth of Streptococcus faecalis in the presence of l-malate resulted in the induction of a “malic enzyme” [l-malate:nicotinamide adenine dinucleotide (NAD) oxidoreductase (decarboxylating), E.C. 1.1.1.39]. Synthesis of the malic enzyme did not appear to be subject to catabolite repression by intermediate products of glucose or fructose dissimilation. However, malate utilization was inhibited during growth in the presence of glucose or fructose. The purified enzyme was specific for malate as substrate and NAD as cofactor. Mn+2 or Mg+2 was required for optimal activity and NH4Cl stimulated the reaction rate. Several lines of indirect evidence suggested that the streptococcal malic enzyme was involved primarily with energy production and not biosynthesis.

Full text

PDF
705

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Campbell J. J., Gunsalus I. C. Citric Acid Fermentation by Streptococci and Lactobacilli. J Bacteriol. 1944 Jul;48(1):71–76. doi: 10.1128/jb.48.1.71-76.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jacobson L. A., Bartholomaus R. C., Gunsalus I. C. Repression of malic enzyme by acetate in Pseudomonas. Biochem Biophys Res Commun. 1966 Sep 22;24(6):955–960. doi: 10.1016/0006-291x(66)90343-3. [DOI] [PubMed] [Google Scholar]
  3. London J. Regulation and function of lactate oxidation in Streptococcus faecium. J Bacteriol. 1968 Apr;95(4):1380–1387. doi: 10.1128/jb.95.4.1380-1387.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Rogosa M., Love L. L. Direct quantitative gas chromatographic separation of C2-C6 fatty acids, methanol, and ethyl alcohol in aqueous microbial fermentation media. Appl Microbiol. 1968 Feb;16(2):285–290. doi: 10.1128/am.16.2.285-290.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. STICKLAND R. G. Some properties of the malic enzyme of pigeon liver. 1. Conversion of malate into pyruvate. Biochem J. 1959 Dec;73:646–654. doi: 10.1042/bj0730646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Sanwal B. D., Wright J. A., Smando R. Allosteric control of the activity of malic enzyme in Escherichia coli. Biochem Biophys Res Commun. 1968 May 23;31(4):623–627. doi: 10.1016/0006-291x(68)90524-x. [DOI] [PubMed] [Google Scholar]
  7. Takeo K., Murai T., Nagai J., Katsuki H. Allosteric activation of DPN-linked malic enzyme from Escherichia coli by aspartate. Biochem Biophys Res Commun. 1967 Dec 15;29(5):717–722. doi: 10.1016/0006-291x(67)90276-8. [DOI] [PubMed] [Google Scholar]
  8. Victor R., Lachica F., Hartman P. A. Carbon dioxide fixation and the synthesis of aspartic acid by S. faecium var. Durans. Biochem Biophys Res Commun. 1968 Aug 21;32(4):691–695. doi: 10.1016/0006-291x(68)90294-5. [DOI] [PubMed] [Google Scholar]
  9. WHITTENBURY R. THE DIFFERENTIATION OF STREPTOCOCCUS FAECALIS AND S. FAECIUM. J Gen Microbiol. 1965 Feb;38:279–287. doi: 10.1099/00221287-38-2-279. [DOI] [PubMed] [Google Scholar]
  10. WOLIN M. J. FRUCTOSE-1,6-DIPHOSPHATE REQUIREMENT OF STREPTOCOCCAL LACTIC DEHYDROGENASES. Science. 1964 Nov 6;146(3645):775–777. doi: 10.1126/science.146.3645.775. [DOI] [PubMed] [Google Scholar]
  11. WRIGHT D. E. The metabolism of carbon dioxide by Streptococcus bovis. J Gen Microbiol. 1960 Jun;22:713–725. doi: 10.1099/00221287-22-3-713. [DOI] [PubMed] [Google Scholar]
  12. Zink M. W. Regulation of the "malic" enzyme in Neurospora crassa. Can J Microbiol. 1967 Sep;13(9):1211–1221. doi: 10.1139/m67-166. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES