Abstract
The methylation of ribosomal and transfer ribonucleic acid (RNA) synthesized after the induction of a hydrolase for S-adenosylmethionine by phage T3 infection is reducible to 50% of the methylation of RNA in uninfected cells. Hypomethylated ribosomal RNA is found in 70S particles that dissociate in 100 μm Mg++ to yield only 30S and 50S subunits. By this criterion, the omitted methyl groups apparently are not required for ribosomal maturation or stability. The rate of production of alkaline phosphatase in a phosphatase amber mutant was examined after phage infection in the presence and in the absence of streptomycin to determine the effect on the translation process consequent to S-adenosyl-l-methionine (SAM) hydrolase induction. Significant increases in the rates of phosphatase production were found when ultraviolet-inactivated T3 or streptomycin was added. The effects were cumulative when the cells were treated with both bacteriophage and the drug. Ultraviolet-inactivated T7, a phage closely related to T3 but which does not produce the SAM hydrolase, did not enhance the rate of alkaline phosphatase production. We suggest that the production of SAM hydrolase affects the stability of the translation process by the observed hypomethylation or by mechanisms concerning polyamine metabolism.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ANAND N., DAVIS B. D., ARMITAGE A. K. Uptake of streptomycin by Escherichia coli. Nature. 1960 Jan 2;185:23–24. doi: 10.1038/185023a0. [DOI] [PubMed] [Google Scholar]
- Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BANK A., GEE S., MEHLER A., PETERKOFSKY A. DIFFERENCES IN THE METHYLATED BASE COMPOSITION OF VALYL AND LEUCYL SOLUBLE RIBONUCLEIC ACIDS OF ESCHERICHIA COLI. Biochemistry. 1964 Oct;3:1406–1411. doi: 10.1021/bi00898a003. [DOI] [PubMed] [Google Scholar]
- Cheng T. Y., Hartman K. A., Jr Properties of ribosomes and ribosomal RNA formed by a relaxed mutant of Escherichia coli during growth with ethionine. J Mol Biol. 1968 Jan 28;31(2):191–207. doi: 10.1016/0022-2836(68)90439-7. [DOI] [PubMed] [Google Scholar]
- DAGLEY S., TURNOCK G., WILD D. G. THE ACCUMULATION OF RIBONUCLEIC ACID BY A MUTANT OF ESCHERICHIA COLI. Biochem J. 1963 Sep;88:555–566. doi: 10.1042/bj0880555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davies J., Jones D. S., Khorana H. G. A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol. 1966 Jun;18(1):48–57. doi: 10.1016/s0022-2836(66)80075-x. [DOI] [PubMed] [Google Scholar]
- GAREN A., SIDDIQI O. Suppression of mutations in the alkaline phosphatase structural cistron of E. coli. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1121–1127. doi: 10.1073/pnas.48.7.1121. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLD M., HAUSMANN R., MAITRA U., HURWITZ J. THE ENZYMATIC METHYLATION OF RNA AND DNA. 8. EFFECTS OF BACTERIOPHAGE INFECTION ON THE ACTIVITY OF THE METHYLATING ENZYMES. Proc Natl Acad Sci U S A. 1964 Aug;52:292–297. doi: 10.1073/pnas.52.2.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORDON J., BOMAN H. G. STUDIES ON MICROBIAL RNA.II. TRANSFER OF METHYL GROUPS FROM METHIONINE TO THE RNA OF A RIBONUCLEOPROTEIN PARTICLE. J Mol Biol. 1964 Sep;9:638–653. doi: 10.1016/s0022-2836(64)80172-8. [DOI] [PubMed] [Google Scholar]
- Gefter M., Hausmann R., Gold M., Hurwitz J. The enzymatic methylation of ribonucleic acid and deoxyribonucleic acid. X. Bacteriophage T3-induced S-adenosylmethionine cleavage. J Biol Chem. 1966 May 10;241(9):1995–2006. [PubMed] [Google Scholar]
- Gold M., Gefter M., Hausmann R., Hurwitz J. Methylation of DNA. J Gen Physiol. 1966 Jul;49(6):5–28. doi: 10.1085/jgp.49.6.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorini L., Jacoby G. A., Breckenridge L. Ribosomal ambiguity. Cold Spring Harb Symp Quant Biol. 1966;31:657–664. doi: 10.1101/sqb.1966.031.01.084. [DOI] [PubMed] [Google Scholar]
- Gough M., Lederberg S. Methylated bases in the host-modified deoxyribonucleic acid of Escherichia coli and bacteriophage lambda. J Bacteriol. 1966 Apr;91(4):1460–1468. doi: 10.1128/jb.91.4.1460-1468.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HURWITZ J., ANDERS M., GOLD M., SMITH I. THE ENZYMATIC METHYLATION OF RIBONUCLEIC ACID AND DEOXYRIBONUCLEIC ACID. VII. THE METHYLATION OF RIBONUCLEIC ACID. J Biol Chem. 1965 Mar;240:1256–1266. [PubMed] [Google Scholar]
- Hayashi Y., Osawa S., Miura K. The methyl groups in ribosomal RNA from Escherichia coli. Biochim Biophys Acta. 1966 Dec 21;129(3):519–531. doi: 10.1016/0005-2787(66)90067-0. [DOI] [PubMed] [Google Scholar]
- LEVINTHAL C., SIGNER E. R., FETHEROLF K. Reactivation and hybridization of reduced alkaline phosphatase. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1230–1237. doi: 10.1073/pnas.48.7.1230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- LUDLUM D. B., WARNER R. C., WAHBA A. J. ALKYLATION OF SYNTHETIC POLYNUCLEOTIDES. Science. 1964 Jul 24;145(3630):397–399. doi: 10.1126/science.145.3630.397. [DOI] [PubMed] [Google Scholar]
- Lederberg S. Genetics of host-controlled restriction and modification of deoxyribonucleic acid in Escherichia coli. J Bacteriol. 1966 Mar;91(3):1029–1036. doi: 10.1128/jb.91.3.1029-1036.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madison J. T., Everett G. A., Kung H. K. On the nucleotide sequence of yeast tyrosine transfer RNA. Cold Spring Harb Symp Quant Biol. 1966;31:409–416. doi: 10.1101/sqb.1966.031.01.053. [DOI] [PubMed] [Google Scholar]
- Massoulié J., Michelson A. M., Pochon F. Polynucleotide analogues. VI. Physical studies on 5-substituted pyrimidine polynucleotides. Biochim Biophys Acta. 1966 Jan 18;114(1):16–26. [PubMed] [Google Scholar]
- ROSEN B. CHARACTERISTICS OF 5-FLUOROURACIL-INDUCED SYNTHESIS OF ALKALINE PHOSPHATASE. J Mol Biol. 1965 Apr;11:845–850. doi: 10.1016/s0022-2836(65)80042-0. [DOI] [PubMed] [Google Scholar]
- Raina A., Jansen M., Cohen S. S. Polyamines and the accumulation of ribonucleic acid in some polyauxotrophic strains of Escherichia coli. J Bacteriol. 1967 Nov;94(5):1684–1696. doi: 10.1128/jb.94.5.1684-1696.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rajbhandary U. L., Chang S. H., Stuart A., Faulkner R. D., Hoskinson R. M., Khorana H. G. Studies on polynucleotides, lxviii the primary structure of yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1967 Mar;57(3):751–758. doi: 10.1073/pnas.57.3.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosen B., Rothman F., Weigert M. G. Miscoding caused by 5-fluorouracil. J Mol Biol. 1969 Sep 14;44(2):363–375. doi: 10.1016/0022-2836(69)90181-8. [DOI] [PubMed] [Google Scholar]
- Rothman F., Coleman J. R. Kinetics of transcription and tranalation of a repressed gene. J Mol Biol. 1968 Apr 28;33(2):527–531. doi: 10.1016/0022-2836(68)90212-x. [DOI] [PubMed] [Google Scholar]
- SCHLENK F., DEPALMA R. E. The preparation of S-adenosylmethionine. J Biol Chem. 1957 Dec;229(2):1051–1057. [PubMed] [Google Scholar]
- STARR J. L., FEFFERMAN R. THE OCCURRENCE OF METHYLATED BASES IN RIBOSOMAL RIBONUCLEIC ACID OF ESCHERICHIA COLI K12 W-6. J Biol Chem. 1964 Oct;239:3457–3461. [PubMed] [Google Scholar]
- SVENSSON I., BOMAN H. G., ERIKSSON K. G., KJELLIN K. STUDIES ON MICROBIAL RNA. I. TRANSFER OF METHYL GROUPS FROM METHIONINE TO SOLUBLE RNA FROM ESCHERICHIA COLI. J Mol Biol. 1963 Sep;7:254–271. doi: 10.1016/s0022-2836(63)80006-6. [DOI] [PubMed] [Google Scholar]
- Srinivasan P. R., Nofal S., Sussman C. Species specificity of ribosomal RNA methylases. Biochem Biophys Res Commun. 1964 May 22;16(1):82–87. doi: 10.1016/0006-291x(64)90215-3. [DOI] [PubMed] [Google Scholar]
- Starr J. L. Methylation of the RNA of E. coli K12 W-6 during partial deprivation of methionine. Biochim Biophys Acta. 1965 Aug 10;103(4):696–698. doi: 10.1016/0005-2787(65)90090-0. [DOI] [PubMed] [Google Scholar]
- Szer W. Secondary structure of poly-5-methylcytidylic acid. Biochem Biophys Res Commun. 1965 Jul 12;20(2):182–186. doi: 10.1016/0006-291x(65)90343-8. [DOI] [PubMed] [Google Scholar]
- Zachau H. G., Dütting D., Feldmann H., Melchers F., Karau W. Serine specific transfer ribonucleic acids. XIV. Comparison of nucleotide sequences and secondary structure models. Cold Spring Harb Symp Quant Biol. 1966;31:417–424. doi: 10.1101/sqb.1966.031.01.054. [DOI] [PubMed] [Google Scholar]
