Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Feb;101(2):449–455. doi: 10.1128/jb.101.2.449-455.1970

Increase in Lytic Activity in Competent Cells of Bacillus subtilis After Uptake of Deoxyribonucleic Acid

Charles R Stewart a,1, Julius Marmur a
PMCID: PMC284927  PMID: 4984074

Abstract

Extractable lytic activity in competent cells of Bacillus subtilis 168 was markedly increased after treatment with homologous or heterologous deoxyribonucleic acid (DNA). This increase was prevented by deoxyribonuclease, and did not occur with B. subtilis W23 or with noncompetent B. subtilis 168 cells, neither of which take up DNA. Although the deoxyribonuclease-sensitive step in DNA uptake was completed within 10 min, the increase in lytic activity did not begin until more than 30 min after the addition of DNA. The increase was prevented by any of several antibiotics. These results are discussed in relation to the mechanisms for the uptake of transforming DNA and the lysis of transfected cells.

Full text

PDF
449

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. EATON N. R. New press for disruption of microorganisms. J Bacteriol. 1962 Jun;83:1359–1360. doi: 10.1128/jb.83.6.1359-1360.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Erickson R. J., Young F. E., Braun W. Binding of rabbit gamma globulin by competent Bacillus subtilis cultures. J Bacteriol. 1969 Jul;99(1):125–131. doi: 10.1128/jb.99.1.125-131.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GREEN D. M. INFECTIVITY OF DNA ISOLATED FROM BACILLUS SUBTILIS BACTERIOPHAGE, SP82. J Mol Biol. 1964 Dec;10:438–451. doi: 10.1016/s0022-2836(64)80065-6. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. NESTER E. W., LEDERBERG J. Linkage of genetic units of Bacillus subtilis in DNA transformation. Proc Natl Acad Sci U S A. 1961 Jan 15;47:52–55. doi: 10.1073/pnas.47.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nester E W, Schafer M, Lederberg J. Gene Linkage in DNA Transfer: A Cluster of Genes Concerned with Aromatic Biosynthesis in Bacillus Subtilis. Genetics. 1963 Apr;48(4):529–551. doi: 10.1093/genetics/48.4.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Piechowska M., Shugar D. Inhibitory and lethal effects of DNA on transformable streptococci. Biochem Biophys Res Commun. 1967 Feb 8;26(3):290–295. doi: 10.1016/0006-291x(67)90120-9. [DOI] [PubMed] [Google Scholar]
  9. SEKIGUCHI M., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. II. SYNTHESIS OF PHAGE-INDUCED RNA AND SEQUENTIAL ENZYME PRODUCTION. J Mol Biol. 1964 May;8:638–659. doi: 10.1016/s0022-2836(64)80114-5. [DOI] [PubMed] [Google Scholar]
  10. Salser W., Gesteland R. F., Bolle A. In vitro synthesis of bacteriophage lysozyme. Nature. 1967 Aug 5;215(5101):588–591. doi: 10.1038/215588a0. [DOI] [PubMed] [Google Scholar]
  11. Shockman G. D. Symposium on the fine structure and replication of bacteria and their parts. IV. Unbalanced cell-wall synthesis: autolysis and cell-wall thickening. Bacteriol Rev. 1965 Sep;29(3):345–358. doi: 10.1128/br.29.3.345-358.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Stewart C. R. Physical heterogeneity among Bacillus subtilis deoxyribonucleic acid molecules carrying particular genetic markers. J Bacteriol. 1969 Jun;98(3):1239–1247. doi: 10.1128/jb.98.3.1239-1247.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Strauss N. Further evidence concerning the configuration of transforming deoxyribonucleic acid during entry into Bacillus subtilis. J Bacteriol. 1966 Feb;91(2):702–708. doi: 10.1128/jb.91.2.702-708.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. YOUNG F. E., SPIZIZEN J. BIOCHEMICAL ASPECTS OF COMPETENCE IN THE BACILLUS SUBTILIS TRANSFORMATION SYSTEM. II. AUTOLYTIC ENZYME ACTIVITY OF CELL WALLS. J Biol Chem. 1963 Sep;238:3126–3130. [PubMed] [Google Scholar]
  16. YOUNG F. E., SPIZIZEN J. INCORPORATION OF DEOXYRIBONUCLEIC ACID IN THE BACILLUS SUBTILIS TRANSFORMATION SYSTEM. J Bacteriol. 1963 Sep;86:392–400. doi: 10.1128/jb.86.3.392-400.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. YOUNG F. E., TIPPER D. J., STROMINGER J. L. AUTOLYSIS OF CELL WALLS OF BACILLUS SUBTILIS. MECHANISM AND POSSIBLE RELATIONSHIP TO COMPETENCE. J Biol Chem. 1964 Oct;239:PC3600–PC3602. [PubMed] [Google Scholar]
  18. Young F. E. Autolytic enzyme associated with cell walls of Bacillus subtilis. J Biol Chem. 1966 Aug 10;241(15):3462–3467. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES