Abstract
We have examined germination, protein synthesis and ribonucleic acid (RNA) synthesis by microcysts of the fruiting myxobacterium Myxococcus xanthus. The morphological aspects of microcyst formation were completed at about 2 hr after induction had begun. In such microcysts, germination, RNA synthesis, and protein synthesis were inhibited by actinomycin D (Act D). At 6 hr after induction, germination and protein synthesis had become relatively resistant to Act D, whereas RNA synthesis was inhibited by about 95%. Experiments with 3H-Act D indicated that the deoxyribonucleic acids of both young and old microcysts bind Act D equally. Resistance of germination to Act D was acquired 4 to 5 hr after induction of microcyst formation, and was due to an Act D-sensitive synthesis at that time. Vegetative cells and microcysts were pulsed with uridine-5-3H and chased for 60 min; the RNA was extracted and analyzed by means of sucrose density gradient centrifugation and gel electrophoresis. Both microcysts and vegetative cells were found to contain grossly the same types of RNA in the same proportions. RNA pulse-labeled in microcysts was more stable than that in vegetative cells. No particular portions of the microcyst pulse-labeled RNA were selectively stabilized. These data indicate that a stable messenger RNA required for synthesis of germination proteins was synthesized during microcyst formation. This may be the same as the RNA synthesized 4 to 5 hr after initiation of microcyst formation. We suggest that the existence of such stable messenger RNA in microcysts is consistent with the limited biosynthetic activities of such cells.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aamodt L. W., Eisenstadt J. M. Flagellar synthesis in Salmonella typhimurium: requirement for ribonucleic acid synthesis. J Bacteriol. 1968 Oct;96(4):1079–1088. doi: 10.1128/jb.96.4.1079-1088.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aronson A. Membrane-bound messenger RNA and polysomes in sporulating bacteria. J Mol Biol. 1965 Aug;13(1):92–104. doi: 10.1016/s0022-2836(65)80082-1. [DOI] [PubMed] [Google Scholar]
- Bacon K., Rosenberg E. Ribonucleic acid synthesis during morphogenesis in Myxococcus xanthus. J Bacteriol. 1967 Dec;94(6):1883–1889. doi: 10.1128/jb.94.6.1883-1889.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balassa G., Contesse G. Synthèses macromoléculaires au cours de la germination des spores de B. subtilis. I. Cinétique. Ann Inst Pasteur (Paris) 1965 Nov;109(5):683–705. [PubMed] [Google Scholar]
- Chambon P., Deutscher M. P., Kornberg A. Biochemical studies of bacterial sporulation and germination. X. Ribosomes and nucleic acids of vegetative cells and spores of Bacillus megaterium. J Biol Chem. 1968 Oct 10;243(19):5110–5116. [PubMed] [Google Scholar]
- DWORKIN M., GIBSON S. M. A SYSTEM FOR STUDYING MICROBIAL MORPHOGENESIS: RAPID FORMATION OF MICROCYSTS IN MYXOCOCCUS XANTHUS. Science. 1964 Oct 9;146(3641):243–244. doi: 10.1126/science.146.3641.243. [DOI] [PubMed] [Google Scholar]
- DWORKIN M. Nutritional requirements for vegetative growth of Myxococcus xanthus. J Bacteriol. 1962 Aug;84:250–257. doi: 10.1128/jb.84.2.250-257.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P., Chambon P., Konberg A. Biochemical studies of bacterial sporulation and germination. XI. Protein-synthesizing systems from vegetative cells and spores of Bacillus megaterium. J Biol Chem. 1968 Oct 10;243(19):5117–5125. [PubMed] [Google Scholar]
- Dimmitt K., Bradford S., Simon M. Synthesis of bacterial flagella. I. Requirement for protein and ribonucleic acid synthesis during flagellar regeneration in Bacillus subtilis. J Bacteriol. 1968 Mar;95(3):801–810. doi: 10.1128/jb.95.3.801-810.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dworkin M., Sadler W. Induction of cellular morphogenesis in Myxococcus xanthus. I. General description. J Bacteriol. 1966 Apr;91(4):1516–1519. doi: 10.1128/jb.91.4.1516-1519.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GROSS P. R., COUSINEAU G. H. Effects of actinomycin D on macromolecule synthesis and early development in sea urchin eggs. Biochem Biophys Res Commun. 1963 Feb 18;10:321–326. doi: 10.1016/0006-291x(63)90532-1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Martinez R. J. The formation of bacterial flagella. II. The relative stability of messenger RNA for flagellin biosynthesis. J Mol Biol. 1966 May;17(1):10–17. doi: 10.1016/s0022-2836(66)80090-6. [DOI] [PubMed] [Google Scholar]
- McClatchy J. K., Rickenberg H. V. Heterogeneity of the stability of messenger ribonucleic acid in Salmonella typhimurium. J Bacteriol. 1967 Jan;93(1):115–121. doi: 10.1128/jb.93.1.115-121.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nierlich D. P. Amino acid control over RNA synthesis: a re-evaluation. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1345–1352. doi: 10.1073/pnas.60.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
- Ramsey W. S., Dworkin M. Microcyst germination in Myxococcus xanthus. J Bacteriol. 1968 Jun;95(6):2249–2257. doi: 10.1128/jb.95.6.2249-2257.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenberg E., Katarski M., Gottlieb P. Deoxyribonucleic acid synthesis during exponential growth and microcyst formation in Myxococcus xanthus. J Bacteriol. 1967 Apr;93(4):1402–1408. doi: 10.1128/jb.93.4.1402-1408.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sterlini J. M., Mandelstam J. Commitment to sporulation in Bacillus subtilis and its relationship to development of actinomycin resistance. Biochem J. 1969 Jun;113(1):29–37. doi: 10.1042/bj1130029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- VOLKIN E., COHN W. E. Estimation of nucleic acids. Methods Biochem Anal. 1954;1:287–305. doi: 10.1002/9780470110171.ch11. [DOI] [PubMed] [Google Scholar]
- Yudkin M. D. Lifetime of messenger ribonucleic acid for penicillinase synthesis in several strains of bacilli. Biochem J. 1968 Jul;108(4):675–677. doi: 10.1042/bj1080675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yudkin M. D. Protein synthesis by long-lived messenger ribonucleic acid in bacteria. Biochem J. 1966 Aug;100(2):501–506. doi: 10.1042/bj1000501. [DOI] [PMC free article] [PubMed] [Google Scholar]