Abstract
The transport of d-alanine, d-glutamic acid, and d-valine in Mycobacterium smegmatis was compared quantitatively with that of their l-isomers. It appeared that the uptake of d-alanine was mediated by an active process displaying saturation kinetics characteristic of enzyme function, whereas the uptake of d-glutamic acid was accomplished by a passive process showing diffusion kinetics. Both processes were involved in the uptake of l-alanine, l-glutamic acid, d-valine, and l-valine. d-Valine competed with l-valine for entry into the cell through a single active process. d-Alanine and l-alanine also utilized the same active process, but the d-isomer could not enter the cell through the passive process. The passive process exhibited characteristics of diffusion, but was sensitive to sulfhydryl-blocking reagents and showed competition among structurally related amino acids. These last findings suggested that the passive process is a facilitated diffusion.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES G. F. UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM. Arch Biochem Biophys. 1964 Jan;104:1–18. doi: 10.1016/s0003-9861(64)80028-x. [DOI] [PubMed] [Google Scholar]
- Benko P. V., Wood T. C., Segel I. H. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys. 1969 Feb;129(2):498–508. doi: 10.1016/0003-9861(69)90207-0. [DOI] [PubMed] [Google Scholar]
- CHANG Y. T., SMITH M. L. Studies in the metabolism of Mycobacterium 607. III. The effect of various sources of nitrogen on growth, riboflavin production, and synthesis of a pharmacologically active metabolite. Am Rev Tuberc. 1953 Jul;68(1):119–126. doi: 10.1164/art.1953.68.1.119. [DOI] [PubMed] [Google Scholar]
- COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHEN G. N., RICKENBERG H. V. Concentration spécifique réversible des amino acides chez Escherichia coli. Ann Inst Pasteur (Paris) 1956 Nov;91(5):693–720. [PubMed] [Google Scholar]
- GALE E. F. Assimilation of amino acids by Gram-positive bacteria and some actions of antibiotics thereon. Adv Protein Chem. 1953;8:285–391. doi: 10.1016/s0065-3233(08)60094-7. [DOI] [PubMed] [Google Scholar]
- GALE E. F. The assimilation of amino-acids by bacteria; the relationship between accumulation of free glutamic acid and the formation of combined glutamic acid in Staphylococcus aureus. Biochem J. 1951 Mar;48(3):290–297. doi: 10.1042/bj0480290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F., Folkes J. P. The effect of lipids on the accumulation of certain amino acids by Staphylococcus aureus. Biochim Biophys Acta. 1967 Oct 2;144(2):461–466. doi: 10.1016/0005-2760(67)90177-4. [DOI] [PubMed] [Google Scholar]
- Gits J. J., Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system. Biochim Biophys Acta. 1967 Jul 3;135(3):507–516. doi: 10.1016/0005-2736(67)90040-5. [DOI] [PubMed] [Google Scholar]
- Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):339–346. doi: 10.1016/0304-4165(66)90388-6. [DOI] [PubMed] [Google Scholar]
- HOLDEN J. T., HOLMAN J. Accumulation of freely extractable glutamic acid by lactic acid bacteria. J Biol Chem. 1959 Apr;234(4):865–871. [PubMed] [Google Scholar]
- Halpern Y. S., Even-Shoshan A. Properties of the glutamate transport system in Escherichia coli. J Bacteriol. 1967 Mar;93(3):1009–1016. doi: 10.1128/jb.93.3.1009-1016.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Halpern Y. S., Lupo M. Glutamate transport in wild-type and mutant strains of Escherichia coli. J Bacteriol. 1965 Nov;90(5):1288–1295. doi: 10.1128/jb.90.5.1288-1295.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEMPNER E. S., COWIE D. B. Metabolic pools and the utilization of amino acid analogs for protein synthesis. Biochim Biophys Acta. 1960 Aug 26;42:401–408. doi: 10.1016/0006-3002(60)90817-9. [DOI] [PubMed] [Google Scholar]
- Kaback H. R., Kostellow A. B. Glycine uptake in Escherichia coli. I. Glycine uptake by whole cells of Escherichia coli W+ and a D-serine-resistant. J Biol Chem. 1968 Apr 10;243(7):1384–1389. [PubMed] [Google Scholar]
- Kaback H. R., Stadtman E. R. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc Natl Acad Sci U S A. 1966 Apr;55(4):920–927. doi: 10.1073/pnas.55.4.920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kay W. W., Gronlund A. F. Amino acid pool formation in Pseudomonas aeruginosa. J Bacteriol. 1969 Jan;97(1):282–291. doi: 10.1128/jb.97.1.282-291.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEACH F. R., SNELL E. E. The absorption of glycine and alanine and their peptides by Lactobacillus casei. J Biol Chem. 1960 Dec;235:3523–3531. [PubMed] [Google Scholar]
- Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K-12. J Biol Chem. 1968 Nov 25;243(22):5914–5920. [PubMed] [Google Scholar]
- WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]
- Yabu K. The uptake of D-glutamic acid by Mycobacterium avium. Biochim Biophys Acta. 1967 Feb 1;135(1):181–183. doi: 10.1016/0005-2736(67)90026-0. [DOI] [PubMed] [Google Scholar]