Abstract
In Bacillus cereus 569 a cellular inducer of β-lactamase was isolated which has the same constituents and basic structure as the soluble peptidoglycan found in sporulation, extracts from spores, and germination extracts, and which was previously called “spore-peptide.” The material has been extensively purified and characterized. Two acid-soluble, high-molecular-weight peptidoglycan fractions containing muramic acid, glucosamine, diaminopimelic acid, d-aspartate, and d- and l-alanine, -lysine, -glycine, and -glutamate, distinguishable on the basis of size and different amino acid to amino sugar ratios, have been found to be responsible for the observed induction. Both fractions are capable of inducing high levels of β-lactamase in concentrations lower than those of benzyl penicillin required for optimal induction. Several experiments also suggest that it is the accumulation of such soluble peptidoglycan in penicillin-treated cells which leads to induction of β-lactamase and not the penicillin itself. The “spore-peptide” inducer becomes available during sporulation, and endogenous derepression of β-lactamase activity occurs simultaneously. Such derepression also occurs in a strain of B. cereus very sensitive to penicillin and in which both uninduced as well as “spore-peptide”-induced β-lactamase is a small fraction of that produced by the typical penicillinase producer. These results suggest that β-lactamase in B. cereus functions in cell wall metabolism during sporulation.
Full text
PDF











Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLANKENSHIP L. C., DOETSCH R. N. Influence of a bacterial cell extract upon the morphogenesis of Arthrobacter ureafaciens. J Bacteriol. 1961 Dec;82:882–888. doi: 10.1128/jb.82.6.882-888.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernstein A., Nickerson K. W., Day R. A. Thermal penicillinasderepression and temperature dependence of penicillinase production inducible and constitutive strains of Bacillus cereus. Arch Biochem Biophys. 1967 Mar;119(1):50–54. doi: 10.1016/0003-9861(67)90427-4. [DOI] [PubMed] [Google Scholar]
- Dische Z., Danilchenko A. Modifications of two color reactions of hexoses with cysteine and sulfuric acid. Anal Biochem. 1967 Oct;21(1):119–124. doi: 10.1016/0003-2697(67)90090-5. [DOI] [PubMed] [Google Scholar]
- Hash J. H., Rothlauf M. V. The N,O-diacetylmuramidase of Chalaropsis species. I. Purification and crystallization. J Biol Chem. 1967 Dec 10;242(23):5586–5590. [PubMed] [Google Scholar]
- Huff E., Silverman C. S. Lysis of Staphylococcus aureus cell walls by a soluble staphylococcal enzyme. J Bacteriol. 1968 Jan;95(1):99–106. doi: 10.1128/jb.95.1.99-106.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IMMERS J., VASSEUR E. Influence of sugars and amines on the colorimetric hexosamine method of elson and morgan and its possible elimination. Nature. 1950 Jun 3;165(4205):898–898. doi: 10.1038/165898a0. [DOI] [PubMed] [Google Scholar]
- JANSSEN F. W., LUND A. J., ANDERSON L. E. Colorimetric assay for dipicolinic acid in bacterial spores. Science. 1958 Jan 3;127(3288):26–27. doi: 10.1126/science.127.3288.26. [DOI] [PubMed] [Google Scholar]
- KOGUT M., POLLOCK M. R., TRIDGELL E. J. Purification of penicillin-induced penicillinase of Bacillus cereus NRRL 569: a comparison of its properties with those of a similarly purified penicillinase produced spontaneously by a constitutive mutant strain. Biochem J. 1956 Mar;62(3):391–401. doi: 10.1042/bj0620391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leggate J., Holms W. H. Gratuitous synthesis of beta-lactamase in Staphylococcus aureus. Biochem J. 1967 Aug;104(2):28P–29P. [PMC free article] [PubMed] [Google Scholar]
- Matsuhashi M., Dietrich C. P., Strominger J. L. Incorporation of glycine into the cell wall glycopeptide in Staphylococcus aureus: role of sRNA and lipid intermediates. Proc Natl Acad Sci U S A. 1965 Aug;54(2):587–594. doi: 10.1073/pnas.54.2.587. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller E. J., Piez K. A. An accelerated single-column procedure for the automatic analysis of amino acids in collagen and elastin hydrolyzates. Anal Biochem. 1966 Aug;16(2):320–326. doi: 10.1016/0003-2697(66)90161-8. [DOI] [PubMed] [Google Scholar]
- PARK J. T., HANCOCK R. A fractionation procedure for studies of the synthesis of cell-wall mucopeptide and of other polymers in cells of Staphylococcus aureus. J Gen Microbiol. 1960 Feb;22:249–258. doi: 10.1099/00221287-22-1-249. [DOI] [PubMed] [Google Scholar]
- PARK J. T., JOHNSON M. J. A submicrodetermination of glucose. J Biol Chem. 1949 Nov;181(1):149–151. [PubMed] [Google Scholar]
- POWELL J. F., STRANGE R. E. Biochemical changes occurring during sporulation in Bacillus species. Biochem J. 1956 Aug;63(4):661–668. doi: 10.1042/bj0630661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- POWELL J. F., STRANGE R. E. Biochemical changes occurring during the germination of bacterial spores. Biochem J. 1953 May;54(2):205–209. doi: 10.1042/bj0540205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollock M. R. Origin and function of penicillinase: a problem in biochemical evolution. Br Med J. 1967 Oct 14;4(5571):71–77. doi: 10.1136/bmj.4.5571.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHEININ R. The localizatio of the cell-bound penicillinase of Bacillus cereus in protoplasts. J Gen Microbiol. 1959 Aug;21:124–134. doi: 10.1099/00221287-21-1-124. [DOI] [PubMed] [Google Scholar]
- SNEATH P. H. Proof of the spontaneity of a mutation to penicillinase production in Bacillus cereus. J Gen Microbiol. 1955 Dec;13(3):561–568. doi: 10.1099/00221287-13-3-561. [DOI] [PubMed] [Google Scholar]
- STRANGE R. E., DARK F. A. The composition of the spore coats of Bacillus megatherium, B. subtilis and B. cereus. Biochem J. 1956 Mar;62(3):459–465. doi: 10.1042/bj0620459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STRANGE R. E. Glucosamine values of muramic acid and other amino-sugars by the Elson and Morgan method. Nature. 1960 Jul 2;187:38–40. doi: 10.1038/187038a0. [DOI] [PubMed] [Google Scholar]
- STRANGE R. E., POWELL J. F. Hexosamine-containing peptides in spores of Bacillus subtilis, B. megatherium and B. cereus. Biochem J. 1954 Sep;58(1):80–85. doi: 10.1042/bj0580080. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
- Tipper D. J., Strominger J. L. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1133–1141. doi: 10.1073/pnas.54.4.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WORK E. Reaction of ninhydrin in acid solution with straight-chain amino acids containing two amino groups and its application to the estimation of alpha epsilon-diaminopimelic acid. Biochem J. 1957 Nov;67(3):416–423. doi: 10.1042/bj0670416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise E. M., Jr, Park J. T. Penicillin: its basic site of action as an inhibitor of a peptide cross-linking reaction in cell wall mucopeptide synthesis. Proc Natl Acad Sci U S A. 1965 Jul;54(1):75–81. doi: 10.1073/pnas.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YIP L. C., SHAH R., DAY R. A. METABOLIC CONTROL OF PENICILLINASE BIOSYNTHESIS IN BACILLUS CEREUS. J Bacteriol. 1964 Aug;88:297–308. doi: 10.1128/jb.88.2.297-308.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
