Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Apr;102(1):142–148. doi: 10.1128/jb.102.1.142-148.1970

Biochemical Characterization of Sulfur Assimilation by Salmonella pullorum1

Bruce C Kline a,2, Delbert E Schoenhard a
PMCID: PMC284980  PMID: 4908669

Abstract

The biochemical basis for a cysteine requirement in Salmonella pullorum strain MS35 is presented. Before determining the missing biochemical functions, it was established that the assimilatory sulfate-reducing pathway for this species is an inorganic one in which 3′-phosphoadenylylsulfate (PAPS), sulfite, and sulfide are intermediates. A requirement for 2′- and 3′-adenosine monophosphate was found for in vitro synthesis of PAPS, possibly because 2′- and 3′-adenosine monophosphate inhibits endogenous nucleases that destroy PAPS. The cysteine requirement of strain MS35 was attributed to a defect at 37 C in sulfate permeation and temperature sensitivity in sulfite reduction. At 25 C, sulfite was metabolized to sulfide. A novel property of sulfate-utilizing revertants was their unselected ability to assimilate thiosulfate sulfur at 25 C but not at 37 C.

Full text

PDF
142

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asada K. Purification and properties of a sulfite reductase from leaf tissue. J Biol Chem. 1967 Aug 25;242(16):3646–3654. [PubMed] [Google Scholar]
  2. DREYFUSS J. CHARACTERIZATION OF A SULFATE- AND THIOSULFATE-TRANSPORTING SYSTEM IN SALMONELLA TYPHIMURIUM. J Biol Chem. 1964 Jul;239:2292–2297. [PubMed] [Google Scholar]
  3. Dreyfuss J., Pardee A. B. Regulation of sulfate transport in Salmonella typhimurium. J Bacteriol. 1966 Jun;91(6):2275–2280. doi: 10.1128/jb.91.6.2275-2280.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ellis R. J., Humphries S. K., Pasternak C. A. Repressors of sulphate activation in Escherichia coli. Biochem J. 1964 Jul;92(1):167–172. doi: 10.1042/bj0920167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hilz H., Lipmann F. THE ENZYMATIC ACTIVATION OF SULFATE. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):880–890. doi: 10.1073/pnas.41.11.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Jones-Mortimer M. C., Wheldrake J. F., Pasternak C. A. The control of sulphate reduction in Escherichia coli by O-acetyl-L-serine. Biochem J. 1968 Mar;107(1):51–53. doi: 10.1042/bj1070051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KEMP J. D., ATKINSON D. E., EHRET A., LAZZARINI R. A. EVIDENCE FOR THE IDENTITY OF THE NICOTINAMIDE ADENINE DINUCLEOTIDE PHOSPHATE-SPECIFIC SULFITE AND NITRITE REDUCTASES OF ESCHERICHIA COLI. J Biol Chem. 1963 Oct;238:3466–3471. [PubMed] [Google Scholar]
  8. Kline B. C., Schoenhard D. E. Accumulation of sulfite by a sulfate-using revertant of Salmonella pullorum. J Bacteriol. 1969 Oct;100(1):365–369. doi: 10.1128/jb.100.1.365-369.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kredich N. M., Tomkins G. M. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J Biol Chem. 1966 Nov 10;241(21):4955–4965. [PubMed] [Google Scholar]
  10. LEINWEBER F. J., MONTY K. J. CYSTEINE BIOSYNTHESIS IN NEUROSPORA CRASSA. I. THE METABOLISM OF SULFITE, SULFIDE, AND CYSTEINESULFINIC ACID. J Biol Chem. 1965 Feb;240:782–787. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Neu H. C. The 5'-nucleotidases and cyclic phosphodiesterases (3'-nucleotidases) of the Enterobacteriaceae. J Bacteriol. 1968 May;95(5):1732–1737. doi: 10.1128/jb.95.5.1732-1737.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. PASTERNAK C. A., ELLIS R. J., JONES-MORTIMER M. C., CRICHTON C. E. THE CONTROL OF SULPHATE REDUCTION IN BACTERIA. Biochem J. 1965 Jul;96:270–275. doi: 10.1042/bj0960270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. POSTGATE J. R. The examination of sulphur auxotrophs: a warning. J Gen Microbiol. 1963 Mar;30:481–484. doi: 10.1099/00221287-30-3-481. [DOI] [PubMed] [Google Scholar]
  15. ROBBINS P. W., LIPMANN F. Separation of the two enzymatic phases in active sulfate synthesis. J Biol Chem. 1958 Sep;233(3):681–685. [PubMed] [Google Scholar]
  16. SIEGEL L. M. A DIRECT MICRODETERMINATION FOR SULFIDE. Anal Biochem. 1965 Apr;11:126–132. doi: 10.1016/0003-2697(65)90051-5. [DOI] [PubMed] [Google Scholar]
  17. WHELDRAKE J. F., PASTERNAK C. A. THE CONTROL OF SULPHATE ACTIVATION IN BACTERIA. Biochem J. 1965 Jul;96:276–280. doi: 10.1042/bj0960276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. WILSON L. G., ASAHI T., BANDURSKI R. S. Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite. J Biol Chem. 1961 Jun;236:1822–1829. [PubMed] [Google Scholar]
  19. WILSON L. G., BANDURSKI R. S. Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J Biol Chem. 1958 Oct;233(4):975–981. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES