Abstract
After treating Bacillus megaterium KM membranes with 0.2% sodium deoxycholate, most of the membrane reduced nicotinamide adenine dinucleotide (NADH) oxidase was inactivated, and all of the membrane NADH-2,6 dichlorophenol indophenol oxidoreductase was solubilized. Dilution of the deoxycholate-treated membranes in the presence of divalent cations restored almost all of the original membrane NADH oxidase. The effectiveness of the divalent cation activation decreased in the order Ba2+ > Ca2+ > Mg2+ > Mn2+. After centrifugation, the deoxycholate-treated membranes at 100,000 × g for 1 hr, all of the NADH oxidase that was activated by a divalent cation was soluble. Cation-activated oxidase, however, was insoluble. The results show that 0.2% deoxycholate at least partially solubilizes the total electron chain from NADH to O2 in an inactive from which can be reactivated by divalent cations with the formation of active, insoluble NADH oxidase.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN J. W. EVIDENCE FOR A MAGNESIUM-DEPENDENT DISSOCIATION OF BACTERIAL CYTOPLASTIC MEMBRANE PARTICLES. Biochim Biophys Acta. 1965 Jan 25;94:97–101. doi: 10.1016/0926-6585(65)90012-9. [DOI] [PubMed] [Google Scholar]
- HATEFI Y., HAAVIK A. G., FOWLER L. R., GRIFFITHS D. E. Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem. 1962 Aug;237:2661–2669. [PubMed] [Google Scholar]
- Razin S., Morowitz H. J., Terry T. M. Membrane subunits of Mycoplasma laidlawii and their assembly to membranelike structures. Proc Natl Acad Sci U S A. 1965 Jul;54(1):219–225. doi: 10.1073/pnas.54.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salton M. R. Isolation and characterization of bacterial membranes. Trans N Y Acad Sci. 1967 Apr;29(6):764–781. doi: 10.1111/j.2164-0947.1967.tb02300.x. [DOI] [PubMed] [Google Scholar]
- Terry T. M., Engelman D. M., Morowitz H. J. Characterization of the plasma membrane of Mycoplasma laidlawii. II. Modes of aggregation of solubilized membrane components. Biochim Biophys Acta. 1967 Jul 3;135(3):391–405. doi: 10.1016/0005-2736(67)90029-6. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., MacLennan D. H., McConnell D. G., Green D. E. Studies on the electron transfer system. 68. Formation of membranes as the basis of the reconstitution of the mitochondrial electron transfer system. J Biol Chem. 1967 May 10;242(9):2051–2061. [PubMed] [Google Scholar]