Abstract
The glycyl transfer ribonucleic acid (tRNA) synthetase (GRS) activities of several Escherichia coli glyS mutants have been partially characterized; the Km for glycine and the apparent Vmax of several of the altered GRS differ significantly from the parental GRS. Paradoxically, some of the altered forms exhibit more activity in vitro than the GRS from a prototrophic strain (GRSL); several parameters of these activities have been studied in an attempt to resolve this problem. The amount of acylated tRNAGly in vivo was examined to assess the GRS activities inside the cells. During exponential growth in media containing glycine, moderate amounts of acylated tRNAGly occur in the glyS mutants; glycine deprivation leads to a dramatic drop in the amount of acylated tRNAGly. An alternative measure of the in vivo activities of the altered enzymes is the efficiency of suppression of the trpA36 locus by su36+; glyS mutants grown with added glycine exhibit one-third to one-fourth the suppression efficiency of the prototrophic glySH parent, presumably because they are less efficient, even in the presence of high levels of glycine, in charging the tRNAGly species which functions as the translational suppressor.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRODY S., YANOFSKY C. Suppressor gene alteration of protein primary structure. Proc Natl Acad Sci U S A. 1963 Jul;50:9–16. doi: 10.1073/pnas.50.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böck A., Neidhardt F. C. Location of the structural gene for glycyl ribonucleic acid synthetase by means of a strain of Escherichia coli possessing an unusual enzyme. Z Vererbungsl. 1966;98(3):187–192. doi: 10.1007/BF00888946. [DOI] [PubMed] [Google Scholar]
- Carbon J., Berg P., Yanofsky C. Missense suppression due to a genetically altered tRNA. Cold Spring Harb Symp Quant Biol. 1966;31:487–497. doi: 10.1101/sqb.1966.031.01.063. [DOI] [PubMed] [Google Scholar]
- Carbon J., Berg P., Yanofsky C. Studies of missense suppression of the tryptophan synthetase A-protein mutant A36. Proc Natl Acad Sci U S A. 1966 Aug;56(2):764–771. doi: 10.1073/pnas.56.2.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbon J., Curry J. B. Genetically and chemically derived missense suppressor transfer RNA's with altered enzymic aminoacylation rates. J Mol Biol. 1968 Dec 14;38(2):201–216. doi: 10.1016/0022-2836(68)90406-3. [DOI] [PubMed] [Google Scholar]
- Folk W. R., Berg P. Isolation and partial characterization of Escherichia coli mutants with altered glycyl transfer ribonucleic acid synthetases. J Bacteriol. 1970 Apr;102(1):193–203. doi: 10.1128/jb.102.1.193-203.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
- Godson G. N., Sinsheimer R. L. Lysis of Escherichia coli with a neutral detergent. Biochim Biophys Acta. 1967 Dec 19;149(2):476–488. doi: 10.1016/0005-2787(67)90175-x. [DOI] [PubMed] [Google Scholar]
- HELINSKI D. R., YANOFSKY C. Correspondence between genetic data and the position of amino acid alteration in a proein. Proc Natl Acad Sci U S A. 1962 Feb;48:173–183. doi: 10.1073/pnas.48.2.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preiss J., Berg P., Ofengand E. J., Bergmann F. H., Dieckmann M. THE CHEMICAL NATURE OF THE RNA-AMINO ACID COMPOUND FORMED BY AMINO ACID-ACTIVATING ENZYMES. Proc Natl Acad Sci U S A. 1959 Mar;45(3):319–328. doi: 10.1073/pnas.45.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams L. S., Neidhardt F. C. Synthesis and inactivation of aminoacyl-transfer RNA synthetases during growth of Escherichia coli. J Mol Biol. 1969 Aug 14;43(3):529–550. doi: 10.1016/0022-2836(69)90357-x. [DOI] [PubMed] [Google Scholar]