Abstract
Conidia of Neurospora crassa exhibit an ability to transport various amino acids against a concentration gradient. The conidial transport system has previously been characterized in terms of kinetics, competitions, and genetic control. This study describes the development of a new and highly active transport capability which is elaborated during the early stages of development but prior to evident germination. It has been named “postconidial” transport activity and represents as much as 20-fold greater initial rates as compared to those observed with conidia. Development of the postconidial transport activity requires protein synthesis and can be partially repressed when the substrate amino acid is present during the developmental preincubation period. A mutant has been utilized which exhibits normal conidial but fails to develop normal postconidial transport activity for any amino acid examined. Although temperature optimum and pH dependence are similar in conidial and postconidial systems, there is evidence that the new activity is not a simple amplification of an existing capability. This is reflected as a change in competition patterns between particular amino acids as development proceeds.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES G. F. UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM. Arch Biochem Biophys. 1964 Jan;104:1–18. doi: 10.1016/s0003-9861(64)80028-x. [DOI] [PubMed] [Google Scholar]
- Ames G. F., Roth J. R. Histidine and aromatic permeases of Salmonella typhimurim. J Bacteriol. 1968 Nov;96(5):1742–1749. doi: 10.1128/jb.96.5.1742-1749.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britten R. J., Roberts R. B., French E. F. AMINO ACID ADSORPTION AND PROTEIN SYNTHESIS IN Escherichia Coli. Proc Natl Acad Sci U S A. 1955 Nov 15;41(11):863–870. doi: 10.1073/pnas.41.11.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHRISTENSEN H. N., OXENDER D. L. Transport of amino acids into and across cells. Am J Clin Nutr. 1960 Mar-Apr;8:131–136. doi: 10.1093/ajcn/8.2.131. [DOI] [PubMed] [Google Scholar]
- COHEN G. N., MONOD J. Bacterial permeases. Bacteriol Rev. 1957 Sep;21(3):169–194. doi: 10.1128/br.21.3.169-194.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choke H. C. Mutants of NEUROSPORA CRASSA Permeable to Histidinol. Genetics. 1969 Aug;62(4):725–733. doi: 10.1093/genetics/62.4.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DeBusk B. G., DeBusk A. G. Molecular transport in Neurospora crassa. I. Biochemical properties of a phenylalanine permease. Biochim Biophys Acta. 1965 Jun 15;104(1):139–150. doi: 10.1016/0304-4165(65)90229-1. [DOI] [PubMed] [Google Scholar]
- EGAN J. B., MORSE M. L. CARBOHYDRATE TRANSPORT IN STAPHYLOCOCCUS AUREUS I. GENETIC AND BIOCHEMICAL ANALYSIS OF A PLEIOTROPIC TRANSPORT MUTANT. Biochim Biophys Acta. 1965 Feb 15;97:310–319. doi: 10.1016/0304-4165(65)90096-6. [DOI] [PubMed] [Google Scholar]
- Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotropic transport mutant. Biochim Biophys Acta. 1965 Sep 27;109(1):172–183. doi: 10.1016/0926-6585(65)90101-9. [DOI] [PubMed] [Google Scholar]
- Fox C. F., Carter J. R., Kennedy E. P. GENETIC CONTROL OF THE MEMBRANE PROTEIN COMPONENT OF THE LACTOSE TRANSPORT SYSTEM OF Escherichia coli. Proc Natl Acad Sci U S A. 1967 Mar;57(3):698–705. doi: 10.1073/pnas.57.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox C. F., Kennedy E. P. Specific labeling and partial purification of the M protein, a component of the beta-galactoside transport system of Escherichia coli. Proc Natl Acad Sci U S A. 1965 Sep;54(3):891–899. doi: 10.1073/pnas.54.3.891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobson E. S., Metzenberg R. L. A new gene which affects uptake of neutral and acidic amino acids in Neurospora crassa. Biochim Biophys Acta. 1968 Feb 1;156(1):140–147. doi: 10.1016/0304-4165(68)90113-x. [DOI] [PubMed] [Google Scholar]
- Kappy M. S., Metzenberg R. L. Multiple alterations in metabolite uptake in a mutant of Neurospora crassa. J Bacteriol. 1967 Nov;94(5):1629–1637. doi: 10.1128/jb.94.5.1629-1637.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinsey J. A., Stadler D. R. Interaction between analogue resistance and amino acid auxotrophy in Neurospora. J Bacteriol. 1969 Mar;97(3):1114–1117. doi: 10.1128/jb.97.3.1114-1117.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolber A. R., Stein W. D. Identification of a component of a transport 'carrier' system: isolation of the permease expression of the LAC operon of Escherichia coli. Nature. 1966 Feb 12;209(5024):691–694. doi: 10.1038/209691a0. [DOI] [PubMed] [Google Scholar]
- LUBIN M., KESSEL D. H., BUDREAU A., GROSS J. D. The isolation of bacterial mutants defective in amino acid transport. Biochim Biophys Acta. 1960 Aug 26;42:535–538. doi: 10.1016/0006-3002(60)90836-2. [DOI] [PubMed] [Google Scholar]
- Lester G. Genetic control of amino acid permeability in Neurospora crassa. J Bacteriol. 1966 Feb;91(2):677–684. doi: 10.1128/jb.91.2.677-684.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MAIO J. J., RICKENBERG H. V. Carbohydrate and amino acid transport by mammalian cells grown in tissue culture. Exp Cell Res. 1962 Jun;27:31–47. doi: 10.1016/0014-4827(62)90041-1. [DOI] [PubMed] [Google Scholar]
- Pall M. L. Amino acid transport in Neurospora crassa. I. Properties of two amino acid transport systems. Biochim Biophys Acta. 1969 Jan 28;173(1):113–127. doi: 10.1016/0005-2736(69)90042-x. [DOI] [PubMed] [Google Scholar]
- Pardee A. B. Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium. Science. 1967 Jun 23;156(3782):1627–1628. doi: 10.1126/science.156.3782.1627. [DOI] [PubMed] [Google Scholar]
- Pardee A. B. Membrane transport proteins. Proteins that appear to be parts of membrane transport systems are being isolated and characterized. Science. 1968 Nov 8;162(3854):632–637. doi: 10.1126/science.162.3854.632. [DOI] [PubMed] [Google Scholar]
- Pardee A. B. Purification and properties of a sulfate-binding protein from Salmonella typhimurium. J Biol Chem. 1966 Dec 25;241(24):5886–5892. [PubMed] [Google Scholar]
- Penrose W. R., Nichoalds G. E., Piperno J. R., Oxender D. L. Purification and properties of a leucine-binding protein from Escherichia coli. J Biol Chem. 1968 Nov 25;243(22):5921–5928. [PubMed] [Google Scholar]
- Rogers T. O., Lichstein H. C. Regulation of biotin transport in Saccharomyces cerevisiae. J Bacteriol. 1969 Nov;100(2):565–572. doi: 10.1128/jb.100.2.565-572.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- STLAWRENCE P., MALING B. D., ALTWERGER L., RACHMELER M. MUTATIONAL ALTERATION OF PERMEABILITY IN NEUROSPORA: EFFECTS ON GROWTH AND THE UPTAKE OF CERTAIN AMINO ACIDS AND RELATED COMPOUNDS. Genetics. 1964 Dec;50:1383–1402. doi: 10.1093/genetics/50.6.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinha U. Genetic control of the uptake of amino acids in Aspergillus nidulans. Genetics. 1969 Jul;62(3):495–505. doi: 10.1093/genetics/62.3.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadler D. R. Genetic control of the uptake of amino acids in Neurospora. Genetics. 1966 Aug;54(2):677–685. doi: 10.1093/genetics/54.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stadler D. R. Suppressors of amino acid uptake mutants of Neurospora. Genetics. 1967 Dec;57(4):935–942. doi: 10.1093/genetics/57.4.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thwaites W. M., Pendyala L. Regulation of amino acid assimilation in a strain of Neurospora crassa lacking basic amino acid transport activity. Biochim Biophys Acta. 1969 Dec 30;192(3):455–461. doi: 10.1016/0304-4165(69)90394-8. [DOI] [PubMed] [Google Scholar]
- Tuveson R. W., West D. J., Barratt R. W. Glutamic acid dehydrogenases in quiescent and germinating conidia of Neurospora crassa. J Gen Microbiol. 1967 Aug;48(2):235–248. doi: 10.1099/00221287-48-2-235. [DOI] [PubMed] [Google Scholar]
