Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Nov;104(2):707–711. doi: 10.1128/jb.104.2.707-711.1970

Relationship Between Solute Permeability and Osmotic Remediability in a Galactose-Negative Strain of Saccharomyces cerevisiae

John Bassel a,1, Howard C Douglas b
PMCID: PMC285048  PMID: 5489434

Abstract

An osmotic remedial allele, gal 7-1, in the galactose pathway of Saccharomyces cerevisiae responds to either penetrating (ethylene glycol and diethylene glycol) or nonpenetrating (KCl, NaCl, and sorbitol) solutes in the growth medium. Extracts from cells grown under restrictive conditions gave no increase in enzyme activity (gal-1-phosphate, uridylyl transferase) when exposed to the penetrating solutes; thus protein synthesis or possibly polymer assembly is proposed as the critical step remedied by the addition of the solutes.

Full text

PDF
707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassel J., Douglas H. C. Osmotic remedial response in a galactose-negative mutant of Saccharomyces cerevisiae. J Bacteriol. 1968 Mar;95(3):1103–1110. doi: 10.1128/jb.95.3.1103-1110.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CIRILLO V. P. Mechanism of glucose transport across the yeast cell membrane. J Bacteriol. 1962 Sep;84:485–491. doi: 10.1128/jb.84.3.485-491.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DOUGLAS H. C., HAWTHORNE D. C. ENZYMATIC EXPRESSION AND GENETIC LINKAGE OF GENES CONTROLLING GALACTOSE UTILIZATION IN SACCHAROMYCES. Genetics. 1964 May;49:837–844. doi: 10.1093/genetics/49.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Douglas H. C., Hawthorne D. C. Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics. 1966 Sep;54(3):911–916. doi: 10.1093/genetics/54.3.911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FINCHAM J. R., CODDINGTON A. Complementation at the am locus of Neurospora crassa: a reaction between different mutant forms of glutamate dehydrogenase. J Mol Biol. 1963 May;6:361–373. doi: 10.1016/s0022-2836(63)80049-2. [DOI] [PubMed] [Google Scholar]
  6. HAWTHORNE D. C., FRIIS J. OSMOTIC-REMEDIAL MUTANTS. A NEW CLASSIFICATION FOR NUTRITIONAL MUTANTS IN YEAST. Genetics. 1964 Nov;50:829–839. doi: 10.1093/genetics/50.5.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HORIBATA K., KERN M. THE RIBOSOMAL ASSOCIATION OF THE DISSIMILAR POLYPEPTIDE CHAINS OF TRYPTOPHAN SYNTHETASE. Proc Natl Acad Sci U S A. 1964 Feb;51:218–226. doi: 10.1073/pnas.51.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. KIHO Y., RICH A. INDUCED ENZYME FORMED ON BACTERIAL POLYRIBOSOMES. Proc Natl Acad Sci U S A. 1964 Jan;51:111–118. doi: 10.1073/pnas.51.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KOTYK A., KLEINZELLER A. Movement of sodium and cell volume changes in a sodium-rich yeast. J Gen Microbiol. 1959 Apr;20(2):197–212. doi: 10.1099/00221287-20-2-197. [DOI] [PubMed] [Google Scholar]
  10. Marquis R. E. Salt-induced contraction of bacterial cell walls. J Bacteriol. 1968 Mar;95(3):775–781. doi: 10.1128/jb.95.3.775-781.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES