Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Nov;104(2):754–761. doi: 10.1128/jb.104.2.754-761.1970

Partial Purification and Characterization of Glycogen Phosphorylase from Dictyostelium discoideum1

Theodore H D Jones a, Barbara E Wright a
PMCID: PMC285054  PMID: 5530813

Abstract

Glycogen phosphorylase was isolated from cells of Dictyostelium discoideum in the culmination stage of development and purified 35-fold. The enzyme had a pH optimum of 6.9 and contained sulfhydryl groups essential for activity. The Km values for phosphate and glycogen were 3 mm and 0.06% (w/v), respectively. No dependence on, or stimulation by, any nucleotide was observed and a wide variety of nucleotides and glycolytic intermediates did not inhibit the enzyme. Nucleotide sugars competitively inhibited the enzyme. Guanosine diphosphoglucose and adenosine diphosphoglucose were the most effective, and uridine diphosphoglucose was the least effective of the nucleotide sugars tested. The specific activity of glycogen phosphorylase increased from about 0.004 unit per mg of protein in aggregating cells to about 0.024 unit per mg in culminating cells, and then decreased during sorocarp formation. This increase in enzyme specific activity during the starvation and aging of the system can account for the increased rate of glycogen degradation during this period of development. Amylase specific activity, measured at pH 4.8 and 6.9, varied between 0.005 and 0.013 unit per mg of protein during all stages of development.

Full text

PDF
754

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Butcher F. R., Serif G. S. Hormonal control of thyroid phosphorylase. Biochim Biophys Acta. 1968 Feb 1;156(1):59–66. doi: 10.1016/0304-4165(68)90104-9. [DOI] [PubMed] [Google Scholar]
  2. COWGILL R. W. Lobster muscle phosphorylase: purification and properties. J Biol Chem. 1959 Dec;234:3146–3153. [PubMed] [Google Scholar]
  3. Chen G. S., Segel I. H. Purification and properties of glycogen phosphorylase from Escherichia coli. Arch Biochem Biophys. 1968 Sep 20;127(1):175–186. doi: 10.1016/0003-9861(68)90214-2. [DOI] [PubMed] [Google Scholar]
  4. Cleland S. V., Coe E. L. Activities of glycolytic enzymes during the early stages of differentiation in the cellular slime mold Dictyostelium discoideum. Biochim Biophys Acta. 1968 Feb 1;156(1):44–50. doi: 10.1016/0304-4165(68)90102-5. [DOI] [PubMed] [Google Scholar]
  5. Cleland S. V., Coe E. L. Conversion of aspartic acid to glucose during culmination of Dictyostelium discoideum. Biochim Biophys Acta. 1969 Dec 30;192(3):446–454. doi: 10.1016/0304-4165(69)90393-6. [DOI] [PubMed] [Google Scholar]
  6. GEZELIUS K., WRIGHT B. E. ALKALINE PHOSPHATASE IN DICTYOSTELIUM DISCOIDEUM. J Gen Microbiol. 1965 Mar;38:309–327. doi: 10.1099/00221287-38-3-309. [DOI] [PubMed] [Google Scholar]
  7. Hanabusa K., Kanno T., Adachi S., Kobayashi H. Isolation and properties of pig muscle phosphorylase. J Biochem. 1967 Aug;62(2):194–201. doi: 10.1093/oxfordjournals.jbchem.a128648. [DOI] [PubMed] [Google Scholar]
  8. KREBS E. G., FISCHER E. H. Molecular properties and transformations of glycogen phosphorylase in animal tissues. Adv Enzymol Relat Subj Biochem. 1962;24:263–290. doi: 10.1002/9780470124888.ch5. [DOI] [PubMed] [Google Scholar]
  9. KREBS E. G., FISCHER E. H. The phosphorylase b to a converting enzyme of rabbit skeletal muscle. Biochim Biophys Acta. 1956 Apr;20(1):150–157. doi: 10.1016/0006-3002(56)90273-6. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. MADSEN N. B., CORI C. F. The interaction of phosphorylase with protamine. Biochim Biophys Acta. 1954 Dec;15(4):516–525. doi: 10.1016/0006-3002(54)90009-8. [DOI] [PubMed] [Google Scholar]
  12. Maddaiah V. T., Madsen N. B. Kinetics of purified liver phosphorylase. J Biol Chem. 1966 Sep 10;241(17):3873–3881. [PubMed] [Google Scholar]
  13. Marshall R., Sargent D., Wright B. E. Glycogen turnover in Dictyostelium discoideum. Biochemistry. 1970 Jul 21;9(15):3087–3094. doi: 10.1021/bi00817a023. [DOI] [PubMed] [Google Scholar]
  14. Newell P. C., Sussman M. Uridine diphosphate glucose pyrophosphorylase in Dictyostelium discoideum. Stability and developmental fate. J Biol Chem. 1969 Jun 10;244(11):2990–2995. [PubMed] [Google Scholar]
  15. Pannbacker R. G. Uridine diphosphoglucose biosynthesis during differentiation in the cellular slime mold. I. In vivo measurements. Biochemistry. 1967 May;6(5):1283–1286. doi: 10.1021/bi00857a008. [DOI] [PubMed] [Google Scholar]
  16. Shepherd D., Segel I. H. Glycogen phosphorylase of Neurospora crassa. Arch Biochem Biophys. 1969 May;131(2):609–620. doi: 10.1016/0003-9861(69)90436-6. [DOI] [PubMed] [Google Scholar]
  17. Tsai C. Y., Nelson O. E. Phosphorylases I and II of Maize Endosperm. Plant Physiol. 1968 Jan;43(1):103–112. doi: 10.1104/pp.43.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Villar-Palasi C., Gazquez-Martinez I. Purification, properties and mechanism of interconversion of kidney phosphorylase. Biochim Biophys Acta. 1968 Jul 9;159(3):479–489. doi: 10.1016/0005-2744(68)90132-0. [DOI] [PubMed] [Google Scholar]
  19. Wright B. E., Dahlberg D. Stability in vitro of uridine diphosphoglucose pyrophosphorylase in Dictyostelium discoideum. J Bacteriol. 1968 Mar;95(3):983–985. doi: 10.1128/jb.95.3.983-985.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wright B. E. ON ENZYME-SUBSTRATE RELATIONSHIPS DURING BIOCHEMICAL DIFFERENTIATION. Proc Natl Acad Sci U S A. 1960 Jun;46(6):798–803. doi: 10.1073/pnas.46.6.798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wright B., Simon W., Walsh B. T. A kinetic model of metabolism essential to differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1968 Jun;60(2):644–651. doi: 10.1073/pnas.60.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES