Abstract
Morphological mutants of Neurospora with decreased levels of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduced nicotinamide ad enine dinucleotide (NADH) contained only 20% as much of a polyunsaturated fatty acid (linolenic acid) as the wild type in both the phospholipid and neutral lipid fractions. There was an excellent correlation between linolenic acid levels and morphological appearance as a function of total NADPH content, but no correlation with NADH content. The linolenic acid deficiency was balanced by a relative increase in the amounts of the less unsaturated fatty acids (oleic and linoleic acids), but the level of three other fatty acids did not appear to be changed. This accumulation of these two precursors suggests that the NADPH deficiency preferentially affected the final desaturation step, i.e., the conversion of linoleic to linolenic acid. The NADPH needed for this reaction in vivo was probably generated by the pentose phosphate shunt, since mutations affecting the shunt lead to the decreased levels of linolenic acid. It is not clear whether the changes in fatty acid distribution affect the morphogenesis of Neurospora, or if these changes are just part of the NADPH-deficiency syndrome.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BORGSTROM B. Investigation on lipid separation methods. Separation of phospholipids from neutral fat and fatty acids. Acta Physiol Scand. 1952 Jun 6;25(2-3):101–110. doi: 10.1111/j.1748-1716.1952.tb00862.x. [DOI] [PubMed] [Google Scholar]
- Brody S. Correlation between reduced nicotinamide adenine dinucleotide phosphate levels and morphological changes in Neurospora crassa. J Bacteriol. 1970 Mar;101(3):802–807. doi: 10.1128/jb.101.3.802-807.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody S., Tatum E. L. Phosphoglucomutase mutants and morphological changes in neurospora crassa. Proc Natl Acad Sci U S A. 1967 Sep;58(3):923–930. doi: 10.1073/pnas.58.3.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brody S., Tatum E. L. The primary biochemical effect of a morphological mutation in Neurospora crassa. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1290–1297. doi: 10.1073/pnas.56.4.1290. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHANCE B., ESTABROOK R. W., GHOSH A. DAMPED SINUSOIDAL OSCILLATIONS OF CYTOPLASMIC REDUCED PYRIDINE NUCLEOTIDE IN YEAST CELLS. Proc Natl Acad Sci U S A. 1964 Jun;51:1244–1251. doi: 10.1073/pnas.51.6.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CROCKEN B. J., NYC J. F. PHOSPHOLIPID VARIATIONS IN MUTANT STRAINS OF NEUROSPORA CRASSA. J Biol Chem. 1964 Jun;239:1727–1730. [PubMed] [Google Scholar]
- FILLERUP D. L., MEAD J. F. Chromatographic separation of the plasma lipids. Proc Soc Exp Biol Med. 1953 Jul;83(3):574–577. doi: 10.3181/00379727-83-20422. [DOI] [PubMed] [Google Scholar]
- FOLCH J., ASCOLI I., LEES M., MEATH J. A., LeBARON N. Preparation of lipide extracts from brain tissue. J Biol Chem. 1951 Aug;191(2):833–841. [PubMed] [Google Scholar]
- Scott W. A., Tatum E. L. Glucose-6-phosphate dehydrogenase and Neurospora morphology. Proc Natl Acad Sci U S A. 1970 Jun;66(2):515–522. doi: 10.1073/pnas.66.2.515. [DOI] [PMC free article] [PubMed] [Google Scholar]