Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1970 Nov;104(2):857–863. doi: 10.1128/jb.104.2.857-863.1970

Neutral Amino Acid Transport in Pseudomonas fluorescens

P Hechtman a,1, C R Scriver a
PMCID: PMC285069  PMID: 5489439

Abstract

Membrane transport of β-alanine, l-alanine, and l-proline was studied in a β-alanine transaminaseless mutant (strain 67) of Pseudomonas fluorescens. In this mutant β-alanine is metabolically inert, and it was therefore possible to demonstrate active transport of this substrate in the absence of intracellular catabolism. The permease which catalyzes the uptake of β-alanine also transports l-proline and l-alanine. This common transport system was distinguished from permeases which transport only l-alanine and only l-proline by competition studies in strain 67 and by studies of transport specificity in a permeaseless mutant (strain 67/4MTR).

Full text

PDF
857

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AHMED K., SCHOLEFIELD P. G. Biochemical studies on 1-aminocyclopentane carboxylic acid. Can J Biochem Physiol. 1962 Aug;40:1101–1110. [PubMed] [Google Scholar]
  2. AMES G. F. UPTAKE OF AMINO ACIDS BY SALMONELLA TYPHIMURIUM. Arch Biochem Biophys. 1964 Jan;104:1–18. doi: 10.1016/s0003-9861(64)80028-x. [DOI] [PubMed] [Google Scholar]
  3. BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benko P. V., Wood T. C., Segel I. H. Multiplicity and regulation of amino acid transport in Penicillium chrysogenum. Arch Biochem Biophys. 1969 Feb;129(2):498–508. doi: 10.1016/0003-9861(69)90207-0. [DOI] [PubMed] [Google Scholar]
  5. CHRISTENSEN H. N. A TRANSPORT SYSTEM SERVING FOR MONO- AND DIAMINO ACIDS. Proc Natl Acad Sci U S A. 1964 Feb;51:337–344. doi: 10.1073/pnas.51.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHRISTENSEN H. N. RELATIONS IN THE TRANSPORT OF BETA-ALANINE AND THE ALPHA-AMINO ACIDS IN THE EHRLICH CELL. J Biol Chem. 1964 Oct;239:3584–3589. [PubMed] [Google Scholar]
  7. Gits J. J., Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system. Biochim Biophys Acta. 1967 Jul 3;135(3):507–516. doi: 10.1016/0005-2736(67)90040-5. [DOI] [PubMed] [Google Scholar]
  8. Grenson M., Mousset M., Wiame J. M., Bechet J. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):325–338. doi: 10.1016/0304-4165(66)90387-4. [DOI] [PubMed] [Google Scholar]
  9. Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. Biochim Biophys Acta. 1966 Oct 31;127(2):339–346. doi: 10.1016/0304-4165(66)90388-6. [DOI] [PubMed] [Google Scholar]
  10. Hechtman P., Scriver C. R., Middleton R. B. Isolation and properties of a beta-alanine transaminaseless mutant of Pseudomonas fluorescens. J Bacteriol. 1970 Nov;104(2):851–856. doi: 10.1128/jb.104.2.851-856.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KESSEL D., LUBIN M. Transport of proline in Escherichia coli. Biochim Biophys Acta. 1962 Feb 12;57:32–43. doi: 10.1016/0006-3002(62)91074-0. [DOI] [PubMed] [Google Scholar]
  12. Kay W. W., Gronlund A. F. Amino acid pool formation in Pseudomonas aeruginosa. J Bacteriol. 1969 Jan;97(1):282–291. doi: 10.1128/jb.97.1.282-291.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kay W. W., Gronlund A. F. Amino acid transport in Pseudomonas aeruginosa. J Bacteriol. 1969 Jan;97(1):273–281. doi: 10.1128/jb.97.1.273-281.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kay W. W., Gronlund A. F. Influence of carbon or nitrogen starvation on amino acid transport in Pseudomonas aeruginosa. J Bacteriol. 1969 Oct;100(1):276–282. doi: 10.1128/jb.100.1.276-282.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kay W. W., Gronlund A. F. Isolation of amino acid transport-negative mutants of Pseudomonas aeruginosa and cells with repressed transport activity. J Bacteriol. 1969 Apr;98(1):116–123. doi: 10.1128/jb.98.1.116-123.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kay W. W., Gronlund A. F. Proline transport by Pseudomonas aeruginosa. Biochim Biophys Acta. 1969;193(2):444–455. doi: 10.1016/0005-2736(69)90203-x. [DOI] [PubMed] [Google Scholar]
  17. Lester G. Genetic control of amino acid permeability in Neurospora crassa. J Bacteriol. 1966 Feb;91(2):677–684. doi: 10.1128/jb.91.2.677-684.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mohyuddin F., Scriver C. R. Amino acid transport in mammalian kidney: Multiple systems for imino acids and glycine in rat kidney. Am J Physiol. 1970 Jul;219(1):1–8. doi: 10.1152/ajplegacy.1970.219.1.1. [DOI] [PubMed] [Google Scholar]
  19. Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K-12. J Biol Chem. 1968 Nov 25;243(22):5914–5920. [PubMed] [Google Scholar]
  20. SCHWARTZ J. H., MAAS W. K., SIMON E. J. An impaired concentrating mechanism for amino acids in mutants of Escherichia coli resistant to L-canavanine and D-serine. Biochim Biophys Acta. 1959 Apr;32:582–583. doi: 10.1016/0006-3002(59)90650-x. [DOI] [PubMed] [Google Scholar]
  21. SCRIVER C. R. HARTNUP DISEASE: A GENETIC MODIFICATION OF INTESTINAL AND RENAL TRANSPORT OF CERTAIN NEUTRAL ALPHA-AMINO ACIDS. N Engl J Med. 1965 Sep 2;273:530–532. doi: 10.1056/NEJM196509022731005. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES