Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 May;106(2):500–507. doi: 10.1128/jb.106.2.500-507.1971

Dark Repair of Ultraviolet-Irradiated Deoxyribonucleic Acid by Bacteriophage T4: Purification and Characterization of a Dimer-Specific Phage-Induced Endonuclease

Errol C Friedberg a,1, John J King a
PMCID: PMC285122  PMID: 4929862

Abstract

The purification and properties of an ultraviolet (UV) repair endonuclease are described. The enzyme is induced by infection of cells of Escherichia coli with phage T4 and is missing from extracts of cells infected with the UV-sensitive and excision-defective mutant T4V1. The enzyme attacks UV-irradiated deoxyribonucleic acid (DNA) containing either hydroxymethylcytosine or cytosine, but does not affect native DNA. The specific substrate in UV-irradiated DNA appears to be pyrimidine dimer sites. The purified enzyme alone does not excise pyrimidine dimers from UV-irradiated DNA. However, dimer excision does occur in the presence of the purified endonuclease plus crude extract of cells infected with the mutant T4V1.

Full text

PDF
500

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyle J. M., Symonds N. Radiation-sensitive mutants of T4D. I. T4y: a new radiation-sensitive mutant; effect of the mutation on radiation survival, growth and recombination. Mutat Res. 1969 Nov-Dec;8(3):431–439. doi: 10.1016/0027-5107(69)90060-8. [DOI] [PubMed] [Google Scholar]
  2. Carrier W. L., Setlow R. B. Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid: purification and properties. J Bacteriol. 1970 Apr;102(1):178–186. doi: 10.1128/jb.102.1.178-186.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Friedberg E. C., King J. J. Endonucleolytic cleavage of UV-irradiated DNA controlled by the V+ gene in phage T4. Biochem Biophys Res Commun. 1969 Nov 6;37(4):646–651. doi: 10.1016/0006-291x(69)90859-6. [DOI] [PubMed] [Google Scholar]
  4. HARM W. Mutants of phage T4 with increased sensitivity to ultraviolet. Virology. 1963 Jan;19:66–71. doi: 10.1016/0042-6822(63)90025-4. [DOI] [PubMed] [Google Scholar]
  5. Harm W. Recovery of UV-inactivated E. coli cells by the v-gene action of phage T4. Mutat Res. 1968 Jul-Aug;6(1):175–179. doi: 10.1016/0027-5107(68)90115-2. [DOI] [PubMed] [Google Scholar]
  6. Howard-Flanders P., Boyce R. P., Theriot L. Three loci in Escherichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics. 1966 Jun;53(6):1119–1136. doi: 10.1093/genetics/53.6.1119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaplan J. C., Kushner S. R., Grossman L. Enzymatic repair of DNA, 1. Purification of two enzymes involved in the excision of thymine dimers from ultraviolet-irradiated DNA. Proc Natl Acad Sci U S A. 1969 May;63(1):144–151. doi: 10.1073/pnas.63.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LEHMAN I. R., ROUSSOS G. G., PRATT E. A. The deoxyribonucleases of Escherichia coli. II. Purification and properties of a ribonucleic acid-inhibitable endonuclease. J Biol Chem. 1962 Mar;237:819–828. [PubMed] [Google Scholar]
  9. Litman R. M. A deoxyribonucleic acid polymerase from Micrococcus luteus (Micrococcus lysodeikticus) isolated on deoxyribonucleic acid-cellulose. J Biol Chem. 1968 Dec 10;243(23):6222–6233. [PubMed] [Google Scholar]
  10. Litwin S., Shahn E., Kozinski A. W. Interpretation of sucrose gradient sedimentation pattern of deoxyribonucleic acid fragments resulting from random breaks. J Virol. 1969 Jul;4(1):24–30. doi: 10.1128/jvi.4.1.24-30.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  12. Reiter H., Strauss B., Marone R., Robbins M. Actinomycin D inhibition of UV-dark repair in Bacillus subtilis. Biochem Biophys Res Commun. 1966 Sep 22;24(6):892–898. doi: 10.1016/0006-291x(66)90333-0. [DOI] [PubMed] [Google Scholar]
  13. STREISINGER G. The genetic control of ultraviolet sensitivity levels in bacteriophages T2 and T4. Virology. 1956 Feb;2(1):1–12. doi: 10.1016/0042-6822(56)90072-1. [DOI] [PubMed] [Google Scholar]
  14. Sekiguchi M., Yasuda S., Okubo S., Nakayama H., Shimada K., Takagi Y. Mechanism of repair of DNA in bacteriophage. I. Excision of pyrimidine dimers from ultraviolet-irradiated DNA by an extract of T4-infected cells. J Mol Biol. 1970 Jan 28;47(2):231–242. doi: 10.1016/0022-2836(70)90342-6. [DOI] [PubMed] [Google Scholar]
  15. Setlow R. B., Carrier W. L. Formation and destruction of pyrimidine dimers in polynucleotides by ultra-violet irradiation in the presence of proflavine. Nature. 1967 Mar 4;213(5079):906–907. doi: 10.1038/213906a0. [DOI] [PubMed] [Google Scholar]
  16. Yasuda S., Sekiguchi M. Mechanism of repair of DNA in bacteriophage. II. Inability of ultraviolet-sensitive strains of bacteriophage in inducing an enzyme activity to excise pyrimidine dimers. J Mol Biol. 1970 Jan 28;47(2):243–255. doi: 10.1016/0022-2836(70)90343-8. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES