Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1971 May;106(2):543–550. doi: 10.1128/jb.106.2.543-550.1971

Effect of Gene Induction on the Rate of Mutagenesis by ICR-191 in Escherichia coli

Robert K Herman 1, Nomi B Dworkin 1
PMCID: PMC285129  PMID: 4929867

Abstract

ICR-191, an acridine half-mustard known to cause frameshift mutations in bacteria, was used to induce Lac mutations revertible by ICR-191. The reversion rates of several of these mutations were stimulated approximately twofold by the presence of lac inducer. The stimulatory effect of inducer was attributable to gene induction rather than some other effect of inducer, since inducer did not stimulate reversion in a regulator constitutive strain. The stimulatory effect was not observed unless the gene to be reverted was induced during the period of exposure to ICR-191. The presence of a strong polar (nonsense) mutation on the operator side of a frameshift mutation abolished the stimulatory effect of inducer on reversion of the frameshift mutation by ICR-191. (As expected, a nonpolar mutation on the operator side of the frameshift mutation did not affect inducer-stimulated reversion.) It was concluded that some aspect of transcription or translation, or both, in the neighborhood of the ICR-191-induced mutation stimulated reversion by ICR-191. A recA mutation had no effect on reversion by ICR-191 in the presence or absence of inducer. In one mutant, gene induction depressed reversion by ICR-191 about sevenfold. The difference between this exceptional strain and other mutants was not attributable to different genetic backgrounds but seemed to be an inherent difference in the original Lac mutations.

Full text

PDF
543

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpers D. H., Tomkins G. M. Sequential transcription of the genes of the lactose operon and its regulation by protein synthesis. J Biol Chem. 1966 Oct 10;241(19):4434–4443. [PubMed] [Google Scholar]
  2. Ames B. N., Whitfield H. J., Jr Frameshift mutagenesis in Salmonella. Cold Spring Harb Symp Quant Biol. 1966;31:221–225. doi: 10.1101/sqb.1966.031.01.030. [DOI] [PubMed] [Google Scholar]
  3. Berger H., Brammar W. J., Yanofsky C. Spontaneous and ICR191-A-induced frameshift mutations in the A gene of Escherichia coli tryptophan synthetase. J Bacteriol. 1968 Nov;96(5):1672–1679. doi: 10.1128/jb.96.5.1672-1679.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRICK F. H., BARNETT L., BRENNER S., WATTS-TOBIN R. J. General nature of the genetic code for proteins. Nature. 1961 Dec 30;192:1227–1232. doi: 10.1038/1921227a0. [DOI] [PubMed] [Google Scholar]
  5. GORINI L., KAUFMAN H. Selecting bacterial mutants by the penicillin method. Science. 1960 Feb 26;131(3400):604–605. doi: 10.1126/science.131.3400.604. [DOI] [PubMed] [Google Scholar]
  6. Herman R. K. Effect of gene induction on frequency of intragenic recombination of chromosome and F-merogenote in Escherichia coli K-12. Genetics. 1968 Jan;58(1):55–67. doi: 10.1093/genetics/58.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Herman R. K. Identification of recombinant chromosomes and F-merogenotes in merodiploids of Escherichia coli. J Bacteriol. 1968 Jul;96(1):173–179. doi: 10.1128/jb.96.1.173-179.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Herman R. K. Reciprocal recombination of chromosome and F. merogenote in Escherichia coli. J Bacteriol. 1965 Dec;90(6):1664–1668. doi: 10.1128/jb.90.6.1664-1668.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kepes A. Sequential transcription and translation in the lactose operon of Escherichia coli. Biochim Biophys Acta. 1967 Mar 29;138(1):107–123. doi: 10.1016/0005-2787(67)90591-6. [DOI] [PubMed] [Google Scholar]
  10. LERMAN L. S. The structure of the DNA-acridine complex. Proc Natl Acad Sci U S A. 1963 Jan 15;49:94–102. doi: 10.1073/pnas.49.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Leive L., Kollin V. Synthesis, utilization and degradation of lactose operon mRNA in Escherichia coli. J Mol Biol. 1967 Mar 14;24(2):247–259. doi: 10.1016/0022-2836(67)90330-0. [DOI] [PubMed] [Google Scholar]
  12. Martin R. G. Frameshift mutants in the histidine operon of Salmonella typhimurium. J Mol Biol. 1967 Jun 14;26(2):311–328. doi: 10.1016/0022-2836(67)90300-2. [DOI] [PubMed] [Google Scholar]
  13. Newton A. Isolation and characterization of frameshift mutations in the lac operon. J Mol Biol. 1970 May 14;49(3):589–601. doi: 10.1016/0022-2836(70)90283-4. [DOI] [PubMed] [Google Scholar]
  14. Newton W. A., Beckwith J. R., Zipser D., Brenner S. Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol. 1965 Nov;14(1):290–296. doi: 10.1016/s0022-2836(65)80250-9. [DOI] [PubMed] [Google Scholar]
  15. Streisinger G., Okada Y., Emrich J., Newton J., Tsugita A., Terzaghi E., Inouye M. Frameshift mutations and the genetic code. This paper is dedicated to Professor Theodosius Dobzhansky on the occasion of his 66th birthday. Cold Spring Harb Symp Quant Biol. 1966;31:77–84. doi: 10.1101/sqb.1966.031.01.014. [DOI] [PubMed] [Google Scholar]
  16. Taylor A. L. Current linkage map of Escherichia coli. Bacteriol Rev. 1970 Jun;34(2):155–175. doi: 10.1128/br.34.2.155-175.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vielmetter W., Messer W., Schütte A. Growth direction and segregation of the E. coli chromosome. Cold Spring Harb Symp Quant Biol. 1968;33:585–598. doi: 10.1101/sqb.1968.033.01.065. [DOI] [PubMed] [Google Scholar]
  18. Witkin E. M. The mutability toward ultraviolet light of recombination-deficient strains of Escherichia coli. Mutat Res. 1969 Jul-Aug;8(1):9–14. doi: 10.1016/0027-5107(69)90135-3. [DOI] [PubMed] [Google Scholar]
  19. Zipser D. Polar mutations and operon function. Nature. 1969 Jan 4;221(5175):21–25. doi: 10.1038/221021a0. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES