Abstract
The thiosulfate reductase of Desulfovibrio vulgaris has been purified and some of its properties have been determined. Only one protein component was detected when the purified enzyme was subjected to polyacrylamide gel electrophoresis at pH values of 8.9, 8.0, and 7.6. In the presence of H2, the enzyme, when coupled to hydrogenase and with methyl viologen as an electron carrier, catalyzed the reduction of thiosulfate to hydogen sulfide. The use of specifically labeled 35S-thiosulfate revealed that the outer sulfur atom was reduced to sulfide and the inner sulfur atom was released as sulfite. Thus, the enzyme catalyzes the reductive dismutation of thiosulfate to sulfide and sulfite. The molecular weight of the enzyme was determined by sedimentation equilibrium (16,300) and amino acid analysis (15,500). The enzyme sedimented as a single, symmetrical component with a calculated sedimentation coefficient of 2.21S. Amino acid analysis revealed the presence of two half-cystine residues per mole of enzyme and a total of 128 amino acid residues. Carbohydrate and organic phosphorus analyses revealed the presence of 9.2 moles of carbohydrate and 4.8 moles of phosphate per mole of enzyme. The substrate specificity of the enzyme was studied.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Campbell L. L., Postgate J. R. Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev. 1965 Sep;29(3):359–363. doi: 10.1128/br.29.3.359-363.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Findley J. E., Akagi J. M. Evidence for thiosulfate formation during sulfite reduction by Desulfovibrio vulgaris. Biochem Biophys Res Commun. 1969 Jul 23;36(2):266–271. doi: 10.1016/0006-291x(69)90324-6. [DOI] [PubMed] [Google Scholar]
- Findley J. E., Akagi J. M. Role of thiosulfate in bisulfite reduction as catalyzed by Desulfovibrio vulgaris. J Bacteriol. 1970 Sep;103(3):741–744. doi: 10.1128/jb.103.3.741-744.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haschke R. H., Campbell L. L. Purification and properties of a hydrogenase from Desulfovibrio vulgaris. J Bacteriol. 1971 Jan;105(1):249–258. doi: 10.1128/jb.105.1.249-258.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi K., Tachibana S., Ishimoto M. Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium. J Biochem. 1969 Jan;65(1):155–157. [PubMed] [Google Scholar]
- Levinthal M., Schiff J. A. Studies of sulfate utilization by algae. 5. Identification of thiosulfate as a major Acid-volatile product formed by a cell-free sulfate-reducing system from chlorella. Plant Physiol. 1968 Apr;43(4):555–562. doi: 10.1104/pp.43.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Michaels G. B., Davidson J. T., Peck H. D., Jr A flavin-sulfite adduct as an intermediate in the reaction catalyzed by adenylyl sulfate reductase from Desulfovibrio vulgaris. Biochem Biophys Res Commun. 1970 May 11;39(3):321–328. doi: 10.1016/0006-291x(70)90579-6. [DOI] [PubMed] [Google Scholar]
- Nakatsukasa W., Akagi J. M. Thiosulfate reductase isolated from Desulfotomaculum nigrificans. J Bacteriol. 1969 May;98(2):429–433. doi: 10.1128/jb.98.2.429-433.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PECK H. D., Jr, GEST H. A new procedure for assay of bacterial hydrogenases. J Bacteriol. 1956 Jan;71(1):70–80. doi: 10.1128/jb.71.1.70-80.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PECK H. D., Jr The role of adenosine-5'-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans. J Biol Chem. 1962 Jan;237:198–203. [PubMed] [Google Scholar]
- Peck H. D. THE ATP-DEPENDENT REDUCTION OF SULFATE WITH HYDROGEN IN EXTRACTS OF DESULFOVIBRIO DESULFURICANS. Proc Natl Acad Sci U S A. 1959 May;45(5):701–708. doi: 10.1073/pnas.45.5.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postgate J. R., Campbell L. L. Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev. 1966 Dec;30(4):732–738. doi: 10.1128/br.30.4.732-738.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postgate J. R. Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev. 1965 Dec;29(4):425–441. doi: 10.1128/br.29.4.425-441.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suh B., Akagi J. M. Formation of thiosulfate from sulfite by Desulfovibrio vulgaris. J Bacteriol. 1969 Jul;99(1):210–215. doi: 10.1128/jb.99.1.210-215.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]