Abstract
Partial suppressors of isoleucine-requiring mutants (Ile−), deficient in threonine dehydratase (TD), were studied. The suppression enables these auxotrophs to grow on the precursors homoserine or threonine as well as isoleucine. There are two genetically distinct classes of these suppressors: sprB, linked to threonine mutational sites, and sprA which is not linked to the Ile or Thr genetic region. SprA leads to the appearance of a low level of TD activity (2 to 4% of wild type) compared to <0.2% in Ile− mutants. This new TD activity is not activated by glutathione or adenosine monophosphate. Unlike the major TD, it is insensitive to inhibition by isoleucine and it is not coordinately controlled with dihydroxy acid dehydratase. Another class of auxotrophs, containing no suppressor mutation, can grow on isoleucine and homoserine or threonine because they possess structural gene mutations located near the terminus of the TD gene that result in partial impairment of TD. This TD activity (2% of wild type) is end product inhibited by isoleucine to a lesser extent than wild type TD. In this and a following paper, evidence is presented that sprA acts by derepressing a minor TD activity encoded within the threonine synthetic region. The major TD gene is separated from the region encoding the enzymes of threonine biosynthesis by 73% of the chromosome. Like the major TD, the minor TD catalyzes the first reaction in the conversion of threonine to isoleucine and is therefore closely related biochemically and genetically to the enzymes of the threonine synthetic region.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAMSKY T., SHEMIN D. THE FORMATION OF ISOLEUCINE FROM BETA-METHYLASPARTIC ACID IN ESCHERICHIA COLI W. J Biol Chem. 1965 Jul;240:2971–2975. [PubMed] [Google Scholar]
- Anagnostopoulos C., Schneider-Champagne A. M. Déterminisme génétique de l'exigence en thymine chez certains mutants de Bacillus subtilis. C R Acad Sci Hebd Seances Acad Sci D. 1966 Mar 14;262(11):1311–1314. [PubMed] [Google Scholar]
- Anagnostopoulos C., Spizizen J. REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS. J Bacteriol. 1961 May;81(5):741–746. doi: 10.1128/jb.81.5.741-746.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DATTA P., GEST H., SEGAL H. L. EFFECTS OF FEEDBACK MODIFIERS ON THE STATE OF AGGREGATION OF HOMOSERINE DEHYDROGENASE OF RHODOSPIRILLUM RUBRUM. Proc Natl Acad Sci U S A. 1964 Jan;51:125–130. doi: 10.1073/pnas.51.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Datta P. Purification and feedback control of threonine deaminase activity of Rhodopseudomonas spheroides. J Biol Chem. 1966 Dec 25;241(24):5836–5844. [PubMed] [Google Scholar]
- EPHRATI-ELIZUR E., SRINIVASAN P. R., ZAMENHOF S. Genetic analysis, by means of transformation, of histidine linkage groups in Bacillus subtilis. Proc Natl Acad Sci U S A. 1961 Jan 15;47:56–63. doi: 10.1073/pnas.47.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAYAISHI O., GEFTER M., WEISSBACH H. Adenosine diphosphate-dependent threonine dehydrase activity in extracts of Clostridium tetanomorphum. J Biol Chem. 1963 Jun;238:2040–2044. [PubMed] [Google Scholar]
- HAYASHIBE M., UEMURA T. Release from the feedback inhibition controlling the biosynthesis of isoleucne. Nature. 1961 Sep 30;191:1417–1418. doi: 10.1038/1911417a0. [DOI] [PubMed] [Google Scholar]
- HUGHES M., BRENNEMAN C., GEST H. FEEDBACK SENSITIVITY OF THREONINE DEAMINASES IN TWO SPECIES OF PHOTOSYNTHETIC BACTERIA. J Bacteriol. 1964 Oct;88:1201–1202. doi: 10.1128/jb.88.4.1201-1202.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatfield G. W., Ray W. J., Jr, Umbarger H. E. Threonine deaminase from Bacillus subtilis. 3. Pre-steady state kinetic properties. J Biol Chem. 1970 Apr 10;245(7):1748–1753. [PubMed] [Google Scholar]
- Hatfield G. W., Umbarger H. E. Threonine deaminase from Bacillus subtilis. I. Purification of the enzyme. J Biol Chem. 1970 Apr 10;245(7):1736–1741. [PubMed] [Google Scholar]
- Hatfield G. W., Umbarger H. E. Threonine deaminase from Bacillus subtilis. II. The steady state kinetic properties. J Biol Chem. 1970 Apr 10;245(7):1742–1747. [PubMed] [Google Scholar]
- KERWAR S. S., CHELDELIN V. H., PARKS L. W. VALINE-ISOLEUCINE METABOLISM IN ACETOBACTER SUBOXYDANS AND THE INHIBITION OF GROWTH BY VALINE. J Bacteriol. 1964 Jul;88:179–186. doi: 10.1128/jb.88.1.179-186.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Leitzmann C., Bernlohr R. W. Threonine dehydratase of Bacillus licheniformis. II. Regulation during development. Biochim Biophys Acta. 1968 Feb 5;151(2):461–472. doi: 10.1016/0005-2744(68)90114-9. [DOI] [PubMed] [Google Scholar]
- MYERS J. W. Dihydroxy acid dehydrase: an enzyme involved in the biosynthesis of isoleucine and valine. J Biol Chem. 1961 May;236:1414–1418. [PubMed] [Google Scholar]
- Mudd S. H., Finkelstein J. D., Irreverre F., Laster L. Transsulfuration in mammals. Microassays and tissue distributions of three enzymes of the pathway. J Biol Chem. 1965 Nov;240(11):4382–4392. [PubMed] [Google Scholar]
- SELIM A. S., GREENBERG D. M. An enzyme that synthesizes cystathionine and deaminates L-serine. J Biol Chem. 1959 Jun;234(6):1474–1480. [PubMed] [Google Scholar]
- SELIM A. S., GREENBERG D. M. Further studies on cystathionine synthetase-serine deaminase of rat liver. Biochim Biophys Acta. 1960 Aug 12;42:211–217. doi: 10.1016/0006-3002(60)90783-6. [DOI] [PubMed] [Google Scholar]
- UMBARGER H. E., BROWN B. Isoleucine and valine metabolism in Escherichia coli. VII. A negative feedback mechanism controlling isoleucine biosynthesis. J Biol Chem. 1958 Aug;233(2):415–420. [PubMed] [Google Scholar]
- UMBARGER H. E., BROWN B. Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol. 1957 Jan;73(1):105–112. doi: 10.1128/jb.73.1.105-112.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- UMBARGER H. E. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science. 1956 May 11;123(3202):848–848. doi: 10.1126/science.123.3202.848. [DOI] [PubMed] [Google Scholar]
- WOOD W. A., GUNSALUS I. C. Serine and threonine desaminaes of Escherichia coli; activators for a cell-free enzyme. J Biol Chem. 1949 Nov;181(1):171–182. [PubMed] [Google Scholar]
- Wilson M. C., Farmer J. L., Rothman F. Thymidylate synthesis and aminopterin resistance in Bacillus subtilis. J Bacteriol. 1966 Jul;92(1):186–196. doi: 10.1128/jb.92.1.186-196.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
