Abstract
Leucyl-transfer ribonucleic acid (tRNA) synthetase was purified 100-fold from extracts of Salmonella typhimurium. The partially purified enzyme had the following Km values: leucine, 1.1 × 10−5m; adenosine triphosphate, 6.5 × 10−4m; tRNAILeu, 4.1 × 10−8m; tRNAIILeu, 4.3 × 10−8m; tRNAIIILeu, 5.3 × 10−8m; and tRNAIVLeu, 2.9 × 10−8m. The tRNALeu fractions were isolated from Salmonella bulk tRNA by chromatography on reversed-phase columns and benzoylated diethylaminoethyl cellulose. The enzyme had a pH optimum of 8.5 and an activation energy of 10,400 cal per mole, and was inactivated exponentially at 49.5 C with a first-order rate constant of 0.064 min−1. Strain CV356 (leuS3 leuABCD702 ara-9 gal-205) was isolated as a mutant resistant to dl-4-azaleucine and able to grow at 27 C but not at 37 C. Extracts of strain CV356 had no leucyl-tRNA synthetase activity (charging assay) when assayed at 27 or 37 C. Temperature sensitivity and enzyme deficiency were caused by mutation in the structural gene locus specifying leucyl-tRNA synthetase. A prototrophic derivative of strain CV356 (CV357) excreted branched-chain amino acids and had high pathway-specific enzyme levels when grown at temperatures where its doubling time was near normal. At growth-restricting temperatures, both amino acid excretion and enzyme levels were further elevated. The properties of strain CV357 indicate that there is only a single leucyl-tRNA synthetase in S. typhimurium.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alexander R. R., Calvo J. M., Freundlich M. Mutants of Salmonella typhimurium with an altered leucyl-transfer ribonucleic acid synthetase. J Bacteriol. 1971 Apr;106(1):213–220. doi: 10.1128/jb.106.1.213-220.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bennett T. P. Evidence for one leucyl transfer ribonucleic acid synthetase with specificity for leucine transfer ribonucleic acids with different coding characteristics. J Biol Chem. 1969 Jun 25;244(12):3182–3187. [PubMed] [Google Scholar]
- Burns R. O., Calvo J., Margolin P., Umbarger H. E. Expression of the leucine operon. J Bacteriol. 1966 Apr;91(4):1570–1576. doi: 10.1128/jb.91.4.1570-1576.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Calvo J. M., Freundlich M., Umbarger H. E. Regulation of branched-chain amino acid biosynthesis in Salmonella typhimurium: isolation of regulatory mutants. J Bacteriol. 1969 Mar;97(3):1272–1282. doi: 10.1128/jb.97.3.1272-1282.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DIXON M. A nomogram for ammonium sulphate solutions. Biochem J. 1953 Jun;54(3):457–458. doi: 10.1042/bj0540457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
- Hayashi H., Knowles J. R., Katze J. R., Lapointe J., Söll D. Purification of leucyl transfer ribonucleic acid synthetase from Escherichia coli. J Biol Chem. 1970 Mar 25;245(6):1401–1406. [PubMed] [Google Scholar]
- Kan J., Nirenberg M. W., Sueooka N. Coding specificity of Escherichia coli leucine transfer ribonucleic acids and effect of bacteriophage T2 infection. J Mol Biol. 1970 Sep 14;52(2):179–193. doi: 10.1016/0022-2836(70)90024-0. [DOI] [PubMed] [Google Scholar]
- Kan J., Sueoka N. Further evidence for a single leucyl transfer ribonucleic acid synthetase capable of charging five leucine transfer ribonucleic acids in Escherichia coli. J Biol Chem. 1971 Apr 10;246(7):2207–2210. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARGOLIN P. Genetic fine structure of the leucine operon in Salmonella. Genetics. 1963 Mar;48:441–457. doi: 10.1093/genetics/48.3.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RAMAKRISHNAN T., ADELBERG E. A. REGULATORY MECHANISMS IN THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE. II. IDENTIFICATION OF TWO OPERATOR GENES. J Bacteriol. 1965 Mar;89:654–660. doi: 10.1128/jb.89.3.654-660.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray D. K., Rappaport H. P. Further investigations of the multiple fractions of leucyl transfer ribonucleic acid synthetase activity from Escherichia coli. Biochim Biophys Acta. 1970 Jan 21;199(1):79–85. doi: 10.1016/0005-2787(70)90696-9. [DOI] [PubMed] [Google Scholar]
- Rouget P., Chapeville F. Leucyl-tRNA synthetase. Purification of two interconvertible forms and evidence for an interconversion factor. Eur J Biochem. 1970 Jul;14(3):498–508. doi: 10.1111/j.1432-1033.1970.tb00316.x. [DOI] [PubMed] [Google Scholar]
- Roy K. L., Söll D. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases. J Biol Chem. 1970 Mar 25;245(6):1394–1400. [PubMed] [Google Scholar]
- Seifert W., Nass G., Zillig W. Electrophoretic separation of tRNA-bound leucyl-tRNA synthetase from Escherichia coli extracts. J Mol Biol. 1968 Apr 28;33(2):507–511. doi: 10.1016/0022-2836(68)90208-8. [DOI] [PubMed] [Google Scholar]
- Silbert D. F., Fink G. R., Ames B. N. Histidine regulatory mutants in Salmonella typhimurium 3. A class of regulatory mutants deficient in tRNA for histidine. J Mol Biol. 1966 Dec 28;22(2):335–347. doi: 10.1016/0022-2836(66)90136-7. [DOI] [PubMed] [Google Scholar]
- Smith H. O., Levine M. A phage P22 gene controlling integration of prophage. Virology. 1967 Feb;31(2):207–216. doi: 10.1016/0042-6822(67)90164-x. [DOI] [PubMed] [Google Scholar]
- Stieglitz B., Calvo J. M. Effect of 4-azaleucine upon leucine metabolism in Salmonella typhimurium. J Bacteriol. 1971 Oct;108(1):95–104. doi: 10.1128/jb.108.1.95-104.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vanhumbeeck J., Lurquin P. Purification and some properties of leucyl-tRNA synthetase from Bacillus stearothermophilus. Eur J Biochem. 1969 Sep;10(2):213–218. doi: 10.1111/j.1432-1033.1969.tb00676.x. [DOI] [PubMed] [Google Scholar]
- Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]
- Yu C. T. Multiple forms of leucyl sRNA synthetase of E. coli. Cold Spring Harb Symp Quant Biol. 1966;31:565–570. doi: 10.1101/sqb.1966.031.01.073. [DOI] [PubMed] [Google Scholar]
- Yu C. T., Rappaport H. P. Multiple fractions of leucyl-transfer ribonucleic acid synthetase activity from Escherichia coli. Biochim Biophys Acta. 1966 Jul 20;123(1):134–141. doi: 10.1016/0005-2787(66)90166-3. [DOI] [PubMed] [Google Scholar]