Abstract
Deoxyribonucleic acid (DNA) reassociation analyses were employed to determine the molecular relationships between recombinable nocardiae. Analysis of the compatibility system of Nocardia erythropolis Mat-Ce and Mat-cE mating strains demonstrated the existence of extensive homology under both exacting and nonexacting conditions. Labeled N. erythropolis Mat-cE DNA reassociated equally as well with the Mat-Ce test DNA as with its own filter-bound DNA. However, the Mat-cE DNA bound only ca. 60% of the Mat-Ce DNA, when the latter was the reference. The existence of unique nucleotide sequences is postulated on the basis of these results as well as of aberrant segregation patterns which have been observed in certain class types of recombinants. Reassociation data reveal that recombinants representing the inheritance of different portions of each of the parental genomes have inherited the unique portion from the Mat-Ce parent. N. restrictus AY-B-226 exhibited little relatedness (11 to 32%), and N. globerula ATCC 9356 only slightly more (21 to 42%), to either of these mating strains at either exacting or nonexacting temperatures of incubation.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADAMS J. N. RECOMBINATION BETWEEN NOCARDIA ERYTHROPOLIS AND NOCARDIA CANICRURIA. J Bacteriol. 1964 Oct;88:865–876. doi: 10.1128/jb.88.4.865-876.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adams J. N., Bradley S. G. Recombination Events in the Bacterial Genus Nocardia. Science. 1963 Jun 28;140(3574):1392–1394. doi: 10.1126/science.140.3574.1392. [DOI] [PubMed] [Google Scholar]
- Adams J. N. Partial exclusion of the Nocardia erythropolis chromosome in nocardial recombinants. J Bacteriol. 1968 Nov;96(5):1750–1759. doi: 10.1128/jb.96.5.1750-1759.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner D. J., Fanning G. R., Johnson K. E., Citarella R. V., Falkow S. Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol. 1969 May;98(2):637–650. doi: 10.1128/jb.98.2.637-650.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Britten R. J., Kohne D. E. Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms. Science. 1968 Aug 9;161(3841):529–540. doi: 10.1126/science.161.3841.529. [DOI] [PubMed] [Google Scholar]
- Brownell G. H., Adams J. N., Bradley S. G. Growth and characterization of nocardiophages for Nocardia canicruria and Nocardia erythropolis mating types. J Gen Microbiol. 1967 May;47(2):247–256. doi: 10.1099/00221287-47-2-247. [DOI] [PubMed] [Google Scholar]
- Brownell G. H., Adams J. N. Linkage and segregation of a mating type specific phage and resistance characters in nocardial recombinants. Genetics. 1968 Nov;60(3):437–448. doi: 10.1093/genetics/60.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownell G. H., Adams J. N. Linkage and segregation of unselected markers in matings of Nocardia erythropolis with Nocardia canicruria. J Bacteriol. 1967 Sep;94(3):650–659. doi: 10.1128/jb.94.3.650-659.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownell G. H., Kelly K. L. Inheritance of mating factors in nocardial recombinants. J Bacteriol. 1969 Jul;99(1):25–36. doi: 10.1128/jb.99.1.25-36.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brownell G. H., Walsh R. S., 3rd Heterogenomic recombinants from compatible nocardiae. J Bacteriol. 1970 Oct;104(1):79–86. doi: 10.1128/jb.104.1.79-86.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HURLBERT R. B., SCHMITZ H., BRUMM A. F., POTTER V. R. Nucleotide metabolism. II. Chromatographic separation of acid-soluble nucleotides. J Biol Chem. 1954 Jul;209(1):23–39. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- Monson A. M., Bradley S. G., Enquist L. W., Cruces G. Genetic homologies among Streptomyces violaceoruber strains. J Bacteriol. 1969 Sep;99(3):702–706. doi: 10.1128/jb.99.3.702-706.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warmaar S. O., Cohen J. A. A quantitative assay for DNA-DNA hybrids using membrane filters. Biochem Biophys Res Commun. 1966 Aug 23;24(4):554–558. doi: 10.1016/0006-291x(66)90356-1. [DOI] [PubMed] [Google Scholar]