Abstract
Isolated membranes of Bacillus stearothermophilus 2184D can be disrupted by treatment with sodium dodecyl sulfate (SDS). This disruption is attended by a decreased turbidity of membrane suspensions and a differential loss of activities of the electron transport system. Reduced methyl viologen (MVH)-nitrate reductase activity is insensitive to SDS treatment, whereas reduced nicotinamide adenine dinucleotide (NADH)-nitrate reductase and cyanide-sensitive NADH oxidase activities are decreased by 80% at an SDS concentration of 0.5 mg/mg of membrane protein. NADH-menadione reductase activity is unaffected at this SDS concentration, but at higher detergent levels it also decreases in activity. The abilities of NADH to reduce and nitrate to oxidize the cytochrome components of the membrane were also decreased after SDS treatment. Dilution of solubilized membrane in buffer containing divalent cation results in formation of an aggregate with an increased turbidity and reconstituted NADH-nitrate reductase and cyanide-sensitive NADH oxidase activities. Of several cations tested, magnesium was the most effective, and the reconstitution process was pH-dependent with an optimum at pH 7.4. Intact and aggregated membranes had similar densities and cytochrome contents, and the sensitivity of NADH-nitrate reductase to several inhibitors was similar in intact and reconstituted membranes.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN J. W. EVIDENCE FOR A MAGNESIUM-DEPENDENT DISSOCIATION OF BACTERIAL CYTOPLASTIC MEMBRANE PARTICLES. Biochim Biophys Acta. 1965 Jan 25;94:97–101. doi: 10.1016/0926-6585(65)90012-9. [DOI] [PubMed] [Google Scholar]
- Bishop D. G., Rutberg L., Samuelsson B. The solubilization of the cytoplasmic membrane of Bacillus subtilis by sodium dodecyl sulphate. Eur J Biochem. 1967 Nov;2(4):454–459. doi: 10.1111/j.1432-1033.1967.tb00159.x. [DOI] [PubMed] [Google Scholar]
- Downey R. J., Kiszkiss D. F., Nuner J. H. Influence of oxygen on development of nitrate respiration in Bacillus stearothermophilus. J Bacteriol. 1969 Jun;98(3):1056–1062. doi: 10.1128/jb.98.3.1056-1062.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downey R. J. Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus. J Bacteriol. 1966 Feb;91(2):634–641. doi: 10.1128/jb.91.2.634-641.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. C., Yu L., Wolin M. J. Divalent cation activation of deoxycholate-solubilized and -inactivated membrane reduced nicotinamide adenine dinucleotide oxidase of Bacillus megaterium KM. J Bacteriol. 1970 Apr;102(1):172–177. doi: 10.1128/jb.102.1.172-177.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. C., Yu L., Wolin M. J. Masking of Bacillus megaterium KM membrane reduced nicotinamide adenine dinucleotide oxidase and solubilization studies. J Bacteriol. 1970 Apr;102(1):161–171. doi: 10.1128/jb.102.1.161-171.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelman D. M., Morowitz H. J. Characterization of the plasma membrane of Mycoplasma laidlawii. 3. The formation and aggregation of small lipoprotein structures derived from sodium dodecyl sulfate-solubilized membrane components. Biochim Biophys Acta. 1968 Apr 29;150(3):376–384. doi: 10.1016/0005-2736(68)90136-3. [DOI] [PubMed] [Google Scholar]
- Gel'man N. S., Tikhonova G. V., Simakova I. M., Lukoyanova M. A., Taptykova S. D., Mikelsaar H. M. Fragmentation by detergents of the respiratory chain of Micrococcus lysodeikticus membranes. Biochim Biophys Acta. 1970 Dec 8;223(2):321–331. doi: 10.1016/0005-2728(70)90188-x. [DOI] [PubMed] [Google Scholar]
- Green D. E., Allmann D. W., Bachmann E., Baum H., Kopaczyk K., Korman E. F., Lipton S., MacLennan D. H., McConnell D. G., Perdue J. F. Formation of membranes by repeating units. Arch Biochem Biophys. 1967 Mar;119(1):312–335. doi: 10.1016/0003-9861(67)90461-4. [DOI] [PubMed] [Google Scholar]
- Kiszkiss D. F., Downey R. J. Localization and solubilization of the respiratory nitrate reductase of Bacillus stearothermophilus. J Bacteriol. 1972 Feb;109(2):803–810. doi: 10.1128/jb.109.2.803-810.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Salton M. R., Netschey A. Physical chemistry of isolated bacterial membranes. Biochim Biophys Acta. 1965 Oct 18;107(3):539–545. doi: 10.1016/0304-4165(65)90198-4. [DOI] [PubMed] [Google Scholar]
- Showe M. K., DeMoss J. A. Localization and regulation of synthesis of nitrate reductase in Escherichia coli. J Bacteriol. 1968 Apr;95(4):1305–1313. doi: 10.1128/jb.95.4.1305-1313.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yu L., Wolin M. J. Factors affecting deoxycholate inactivation and Mg++ reactivation of Bacillus megaterium KM membrane nicotinamide adenine dinucleotide (reduced form) oxidase. J Bacteriol. 1970 Aug;103(2):467–474. doi: 10.1128/jb.103.2.467-474.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]