Abstract
Cells of Cryptococcus laurentii, when grown in liquid culture on 2% glucose close to neutral pH, showed glycogen granules throughout the cytoplasm. Glycogen levels of C. laurentii cells reached maximal levels just before onset of stationary phase. Concomitantly, a sharp rise in total and specific activity of glycogen synthetase was observed. Conversely, glycogen phosphorylase reached its highest specific activity approximately 3 hr after the glycogen peaked and remained high until most of the endogenous glycogen was utilized. Uridine diphosphoglucose pyrophosphorylase activity was always an order of magnitude higher than glycogen synthetase during log phase, but fell off rapidly after the cells reached stationary growth. Kinetic properties of the glycogen synthetase showed that the enzyme is always activated by glucose-6-phosphate, although the degree of activation by glucose-6-phosphate was found to be somewhat variable. The accelerated uptake of glucose commencing with the onset of stationary phase is explained by the rapid formation of extracellular acidic polysaccharide, which continues as long as there is glucose in the medium. In cells grown at pH 3.4, where no detectable extracellular acidic polysaccharide was formed, glucose uptake drastically declined when the cells reached stationary phase. These cells also contained glycogen-like granules in the cytoplasm. The evidence presented indicates that these granules are in fact glycogen, and that its structure does not resemble that of the starch excreted by cells grown at acidic pH.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALGRANATI I. D., CABIB E. The synthesis of glycogen in yeast. Biochim Biophys Acta. 1960 Sep 9;43:141–142. doi: 10.1016/0006-3002(60)90422-4. [DOI] [PubMed] [Google Scholar]
- ALGRANATI I. D., CABIB E. Uridine diphosphate D-glucose-glycogen glucosyltransferase from yeast. J Biol Chem. 1962 Apr;237:1007–1013. [PubMed] [Google Scholar]
- ASCHNER M., CURY A. Starch production in the genus Trichosporon. J Bacteriol. 1951 Sep;62(3):350–352. doi: 10.1128/jb.62.3.350-352.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ankel H., Feingold D. S. Biosynthesis of uridine diphosphate D-xylose. II. Uridine diphosphate D-glucuronate carboxy-lyase of Cryptococcus laurentii. Biochemistry. 1966 Jan;5(1):182–189. doi: 10.1021/bi00865a024. [DOI] [PubMed] [Google Scholar]
- Chester V. E., Byrne M. J. Carbohydrate composition and UDP-glucose concentration in a normal yeast and a mutant deficient in glycogen. Arch Biochem Biophys. 1968 Sep 20;127(1):556–562. doi: 10.1016/0003-9861(68)90262-2. [DOI] [PubMed] [Google Scholar]
- Cohen A., Feingold D. S. Uridine diphosphate d-xylose. Acceptor xylosyltransferase of Cryptococcus laurentii. Biochemistry. 1967 Sep;6(9):2933–2939. doi: 10.1021/bi00861a038. [DOI] [PubMed] [Google Scholar]
- KOOIMAN P. THE CHEMICAL STRUCTURE OF THE EXTRACELLULAR "STARCH" PRODUCED BY CRYPTOCOCCUS ALBIDUS AND C. LAURENTII VAR. FLAVESCENS. Antonie Van Leeuwenhoek. 1963;29:169–176. doi: 10.1007/BF02046049. [DOI] [PubMed] [Google Scholar]
- KRISMAN C. R. A method for the colorimetric estimation of glycogen with iodine. Anal Biochem. 1962 Jul;4:17–23. doi: 10.1016/0003-2697(62)90014-3. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Mager J. Studies on the polysaccharides of capsulated yeasts. Biochem J. 1947;41(4):603–609. doi: 10.1042/bj0410603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polakis E. S., Bartley W. Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J. 1965 Oct;97(1):284–297. doi: 10.1042/bj0970284. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman-Denes L. B., Cabib E. Two forms of yeast glycogen synthetase and their role in glycogen accumulation. Proc Natl Acad Sci U S A. 1970 Jul;66(3):967–974. doi: 10.1073/pnas.66.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothman L. B., Cabib E. Allosteric properties of yeast glycogen synthetase. I. General kinetic study. Biochemistry. 1967 Jul;6(7):2098–2112. doi: 10.1021/bi00859a030. [DOI] [PubMed] [Google Scholar]
- Rothman L. B., Cabib E. Regulation of glycogen synthesis in the intact yeast cell. Biochemistry. 1969 Aug;8(8):3332–3341. doi: 10.1021/bi00836a030. [DOI] [PubMed] [Google Scholar]
- Ruinen J., Deinema M. H., van der Scheer C. Cellular and extracellular structures in Cryptococcus laurentii and Rhodotorula species. Can J Microbiol. 1968 Oct;14(10):1133–1137. doi: 10.1139/m68-189. [DOI] [PubMed] [Google Scholar]
- Schultz J. C., Ankel H. Glycogen-bound phosphorylase in Cryptococcus laurentii. Biochim Biophys Acta. 1970 Jul 21;215(1):39–51. doi: 10.1016/0304-4165(70)90385-5. [DOI] [PubMed] [Google Scholar]
- Shepherd D., Rosenthal S., Lundblad G. T., Segel I. H. Neurospora crassa glycogen phosphorylase: characterization and kinetics via a new radiochemical assay for phosphorolysis. Arch Biochem Biophys. 1969 Dec;135(1):334–340. doi: 10.1016/0003-9861(69)90547-5. [DOI] [PubMed] [Google Scholar]
- Shepherd D., Segel I. H. Glycogen phosphorylase of Neurospora crassa. Arch Biochem Biophys. 1969 May;131(2):609–620. doi: 10.1016/0003-9861(69)90436-6. [DOI] [PubMed] [Google Scholar]
- TRAUT R. R., LIPMANN F. Activation of glycogen synthetase by glucose 6-phosphate. J Biol Chem. 1963 Apr;238:1213–1221. [PubMed] [Google Scholar]
- TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
- Téllez-Iñn M. T., Terenzi H., Torres H. N. Interconvertible forms of glycogen synthetase in Neurospora crassa. Biochim Biophys Acta. 1969;191(3):765–768. doi: 10.1016/0005-2744(69)90383-0. [DOI] [PubMed] [Google Scholar]
- VILLAR-PALASI C., LARNER J. Levels of activity of the enzymes of the glycogen cycle in rat tissues. Arch Biochem Biophys. 1960 Feb;86:270–273. doi: 10.1016/0003-9861(60)90417-3. [DOI] [PubMed] [Google Scholar]
