Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Feb;113(2):666–671. doi: 10.1128/jb.113.2.666-671.1973

Divalent Cations in Native and Reaggregated Mycoplasma Membranes

Itzhak Kahane 1, Zvi Ne'Eman 1, Shmuel Razin 1
PMCID: PMC285279  PMID: 4632319

Abstract

The Mg2+ content of membranes of several Mycoplasma and Acholeplasma species varied between 0.88 and 1.98 μg of Mg2+ per mg of protein, depending on the species and on growth conditions. Ca2+ could be detected only when it was added to the growth medium. The Mg2+ content of isolated A. laidlawii membranes could be increased almost threefold by dialysis against 20 mm Mg2+, whereas aggregated A. laidlawii membranes contained about six to eight times more Mg2+ per mg of protein than the native membranes. This was taken to indicate that the molecular organization of the lipid and protein in the reaggregated membranes differs from that of the native membranes. Between 60 and 83% of the Mg2+ in native and reaggregated A. laidlawii membranes was associated with the lipid fraction extracted with chloroform-methanol. The removal of over 80% of membrane protein by Pronase digestion did not release any significant amount of Mg2+. Hence, most of the divalent cation appears to be bound to membrane lipids, most probably to phospholipids. Ethylenediaminetetraacetic acid released the bulk of Mg2+ bound to the native and reaggregated A. laidlawii membranes, except for about 0.5 μg of Mg2+ per mg of protein which was too tightly bound. Hence, a small but fairly constant amount of Mg2+ is unavailable for chelation.

Full text

PDF
666

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrams A., Baron C. Reversible attachment of adenosine triphosphatase to streptococcal membranes and the effect of magnesium ions. Biochemistry. 1968 Feb;7(2):501–507. doi: 10.1021/bi00842a003. [DOI] [PubMed] [Google Scholar]
  2. Asbell M. A., Eagon R. G. Role of Multivalent Cations in the Organization, Structure, and Assembly of the Cell Wall of Pseudomonas aeruginosa. J Bacteriol. 1966 Aug;92(2):380–387. doi: 10.1128/jb.92.2.380-387.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BROWN A. D. ASPECTS OF BACTERIAL RESPONSE TO THE IONIC ENVIRONMENT. Bacteriol Rev. 1964 Sep;28:296–329. doi: 10.1128/br.28.3.296-329.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cutinelli C., Galdiero F., Tufano M. A. Cation-binding capacity of membranes isolated from Micrococcus lysodeikticus. J Bacteriol. 1969 Oct;100(1):123–127. doi: 10.1128/jb.100.1.123-127.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Voe I. W., Oginsky E. L. Cation interactions and biochemical composition of the cell envelope of a marine bacterium. J Bacteriol. 1969 Jun;98(3):1368–1377. doi: 10.1128/jb.98.3.1368-1377.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Diamond R. J., Rose A. H. Osmotic properties of spheroplasts from Saccharomyces cerevisiae grown at different temperatures. J Bacteriol. 1970 May;102(2):311–319. doi: 10.1128/jb.102.2.311-319.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Engelman D. M., Morowitz H. J. Characterization of the plasma membrane of Mycoplasma laidlawii. 3. The formation and aggregation of small lipoprotein structures derived from sodium dodecyl sulfate-solubilized membrane components. Biochim Biophys Acta. 1968 Apr 29;150(3):376–384. doi: 10.1016/0005-2736(68)90136-3. [DOI] [PubMed] [Google Scholar]
  8. Forstner J., Manery J. F. Calcium binding by human erythrocyte membranes. Biochem J. 1971 Sep;124(3):563–571. doi: 10.1042/bj1240563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ishida M., Mizushima S. The membrane ATPase of Bacillus megaterium. II. Purification of membrane ATPases and their recombination with membrane. J Biochem. 1969 Aug;66(2):133–138. doi: 10.1093/oxfordjournals.jbchem.a129128. [DOI] [PubMed] [Google Scholar]
  10. Kahane I., Razin S. Characterization of the mycoplasma membrane proteins. I. Reaggregation of solubilized membrane proteins of Acholeplasma laidlawii. Biochim Biophys Acta. 1971 Oct 12;249(1):159–168. doi: 10.1016/0005-2736(71)90092-7. [DOI] [PubMed] [Google Scholar]
  11. Kahane I., Razin S. Synthesis and turnover of membrane protein and lipid in Mycoplasma laidlawii. Biochim Biophys Acta. 1969 Jun 3;183(1):79–89. doi: 10.1016/0005-2736(69)90131-x. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Long C., Mouat B. The binding of calcium ions by erythrocytes and 'ghost' -cell membranes. Biochem J. 1971 Aug;123(5):829–836. doi: 10.1042/bj1230829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marchesi S. L., Steers E., Marchesi V. T., Tillack T. W. Physical and chemical properties of a protein isolated from red cell membranes. Biochemistry. 1970 Jan 6;9(1):50–57. doi: 10.1021/bi00803a007. [DOI] [PubMed] [Google Scholar]
  15. Metcalfe J. C., Metcalfe S. M., Engelman D. M. Structural comparisons of native and reaggregated membranes from Mycoplasma laidlawii and erythrocytes by x-ray diffraction and nuclear magnetic resonance techniques. Biochim Biophys Acta. 1971 Aug 13;241(2):412–421. doi: 10.1016/0005-2736(71)90041-1. [DOI] [PubMed] [Google Scholar]
  16. Metcalfe S. M., Metcalfe J. C., Engelman D. M. Structural comparisons of native and reaggregated membranes from Mycoplasma laidawii and erythrocytes using a fluorescence probe. Biochim Biophys Acta. 1971 Aug 13;241(2):422–430. doi: 10.1016/0005-2736(71)90042-3. [DOI] [PubMed] [Google Scholar]
  17. Morowitz H. J., Terry T. M. Characterization of the plasma membrane of Mycoplasma laidlawii. V. Effects of selective removal of protein and lipid. Biochim Biophys Acta. 1969 Jul 15;183(2):276–294. doi: 10.1016/0005-2736(69)90084-4. [DOI] [PubMed] [Google Scholar]
  18. Muñoz E., Nachbar M. S., Schor M. T., Salton M. R. Adenosinetriphosphatase of Micrococcus lysodeikticus: selective release and relationship to membrane structure. Biochem Biophys Res Commun. 1968 Aug 13;32(3):539–546. doi: 10.1016/0006-291x(68)90696-7. [DOI] [PubMed] [Google Scholar]
  19. Ne'eman Z., Kahane I., Razin S. Characterization of the mycoplasma membrane proteins. II. Solubilization and enzymic activities of Acholeplasma laidlawii membrane proteins. Biochim Biophys Acta. 1971 Oct 12;249(1):169–176. doi: 10.1016/0005-2736(71)90093-9. [DOI] [PubMed] [Google Scholar]
  20. RAZIN S. OSMOTIC LYSIS OF MYCOPLASMA. J Gen Microbiol. 1963 Dec;33:471–475. doi: 10.1099/00221287-33-3-471. [DOI] [PubMed] [Google Scholar]
  21. Rayman M. K., Gordon R. C., MacLeod R. A. Isolation of a Mg++ phospholipid from Halobacterium cutirubrum. J Bacteriol. 1967 Apr;93(4):1465–1466. doi: 10.1128/jb.93.4.1465-1466.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Razin S., Morowitz H. J., Terry T. M. Membrane subunits of Mycoplasma laidlawii and their assembly to membranelike structures. Proc Natl Acad Sci U S A. 1965 Jul;54(1):219–225. doi: 10.1073/pnas.54.1.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Razin S., Ne'eman Z., Ohad I. Selective reaggregation of solubilized Mycoplasma-membrane proteins and the kinetics of membrane reformation. Biochim Biophys Acta. 1969;193(2):277–293. doi: 10.1016/0005-2736(69)90189-8. [DOI] [PubMed] [Google Scholar]
  24. Razin S. Reconstruction of biological membranes. Biochim Biophys Acta. 1972 Apr 18;265(2):241–296. [PubMed] [Google Scholar]
  25. Reynolds J. A., Tanford C. Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc Natl Acad Sci U S A. 1970 Jul;66(3):1002–1007. doi: 10.1073/pnas.66.3.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rottem S., Stein O., Razin S. Reassembly of Mycoplasma membranes disaggregated by detergents. Arch Biochem Biophys. 1968 Apr;125(1):46–56. doi: 10.1016/0003-9861(68)90637-1. [DOI] [PubMed] [Google Scholar]
  27. Shaw N., Smith P. F., Koostra W. L. The lipid composition of Mycoplasma laidlawii strain B. Biochem J. 1968 Apr;107(3):329–333. doi: 10.1042/bj1070329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith P. F., Koostra W. L., Mayberry W. R. Observations on membranes of Mycoplasma laidlawii strain B. J Bacteriol. 1969 Dec;100(3):1166–1174. doi: 10.1128/jb.100.3.1166-1174.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Terry T. M., Engelman D. M., Morowitz H. J. Characterization of the plasma membrane of Mycoplasma laidlawii. II. Modes of aggregation of solubilized membrane components. Biochim Biophys Acta. 1967 Jul 3;135(3):391–405. doi: 10.1016/0005-2736(67)90029-6. [DOI] [PubMed] [Google Scholar]
  30. Tillack T. W., Carter R., Razin S. Native and reformed Mycoplasma laidlawii membranes compared by freeze-etching. Biochim Biophys Acta. 1970;219(1):123–130. doi: 10.1016/0005-2736(70)90067-2. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES