Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Feb;113(2):672–679. doi: 10.1128/jb.113.2.672-679.1973

Structure of Cell Wall Lipopolysaccharide from Salmonella typhimurium IV. Anomeric Configuration of l-Rhamnose Residues and Its Taxonomic Implications

Hiroshi Kita a,1, Hiroshi Nikaido a
PMCID: PMC285280  PMID: 4570601

Abstract

A major portion of cell wall lipopolysaccharide from group A, group B, or group D1Salmonella corresponds to a linear polysaccharide chain, which consists of α-d-galactosyl-(1 → 2)-α-d-mannosyl-(1 → 4)-l-rhamnosyl-(1 → 3)-repeating units, and has short branches of single 3,6-dideoxyhexose residues. The groups differ in the configuration of the 3,6-dideoxyhexose present. Furthermore, it has been claimed that the anomeric configuration of the rhamnosyl residues is β-l in group B, in contrast to the α-l configuration found in groups A and D1. In this study, oligosaccharides containing more than one repeating unit were isolated from a lipopolysaccharide of a group B Salmonella, and the anomeric configuration of the rhamnosyl residues was determined by the comparison of optical rotatory powers of these oligosaccharides with that of the repeating unit trisaccharide. The results established the configuration of rhamnose as α-l, in contrast to the β-l configuration suggested in the literature. Since rhamnosyl linkages in lipopolysaccharide of a group D1Salmonella are hydrolyzed in acid at exactly the same rate as are those in group B Salmonella, the configuration of rhamnose residues in groups D1 lipopolysaccharide is also likely to be α-l. These results indicate that lipopolysaccharides of Salmonella groups A, B, and D1 share an identical main chain polysaccharide and differ essentially only in the configuration of 3,6-dideoxyhexose branches; they thus suggest close evolutionary relationship between these three serogroups of Salmonella.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bagdian G., Lüderitz O., Staub A. M. Immunochemical studies on Salmonella. XI. Chemical modification correlated with conversion of group B Salmonella by bacteriophage 27. Ann N Y Acad Sci. 1966 Jun 30;133(2):405–424. doi: 10.1111/j.1749-6632.1966.tb52380.x. [DOI] [PubMed] [Google Scholar]
  2. BeMiller J. N. Acid-catalyzed hydrolysis of glycosides. Adv Carbohydr Chem Biochem. 1967;22:25–108. doi: 10.1016/s0096-5332(08)60151-4. [DOI] [PubMed] [Google Scholar]
  3. CONCHIE J., LEVVY G. A., MARSH C. A. Methyl and phenyl glycosides of the common sugars. Adv Carbohydr Chem. 1957;12:157–187. doi: 10.1016/s0096-5332(08)60208-8. [DOI] [PubMed] [Google Scholar]
  4. ELBEIN A. D. THE ENZYMATIC SYNTHESIS OF CYTIDINE DIPHOSPHATE TYVELOSE. Proc Natl Acad Sci U S A. 1965 Apr;53:803–806. doi: 10.1073/pnas.53.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fukuda M., Egami F., Hämmerling G., Lüderitz O., Bagdian G., Staub A. M. A reinvestigation of the anomeric configuration of mannose in the antigens of Salmonella groups B, D and E. Eur J Biochem. 1971 Jun 11;20(3):438–441. doi: 10.1111/j.1432-1033.1971.tb01411.x. [DOI] [PubMed] [Google Scholar]
  6. Hellerqvist C. G., Larm O., Lindberg B., Holme T., Lindberg A. A. Structural studies on the O-specific side chains of the cell wall lipopolysaccharide from Salmonella bredeney. Acta Chem Scand. 1969;23(7):2217–2222. doi: 10.3891/acta.chem.scand.23-2217. [DOI] [PubMed] [Google Scholar]
  7. Hellerqvist C. G., Lindberg B., Samuelsson K., Lindberg A. A. Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from Salmonella parathyphi A var. durazzo. Acta Chem Scand. 1971;25(3):955–961. doi: 10.3891/acta.chem.scand.25-0955. [DOI] [PubMed] [Google Scholar]
  8. Hellerqvist C. G., Lindberg B., Svensson S., Holme T., Lindberg A. A. Structural studies on the O-specific side chains of the cell wall lipopolysaccharides from Salmonella typhi and S. enteritidis. Acta Chem Scand. 1969;23(5):1588–1596. doi: 10.3891/acta.chem.scand.23-1588. [DOI] [PubMed] [Google Scholar]
  9. Matsuhashi S. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses. II. Reversible 2-epimerization of cytidine diphosphate paratose. J Biol Chem. 1966 Sep 25;241(18):4275–4282. [PubMed] [Google Scholar]
  10. Nikaido H., Nikaido K. Enzymatic synthesis of cytidine diphosphate 3,6-dideoxyhexoses in Salmonella. J Biol Chem. 1966 Mar 25;241(6):1376–1385. [PubMed] [Google Scholar]
  11. Nikaido H. Structure of cell wall lipopolysaccharide from Salmonella typhimurium. I. Linkage between o side chains and R core. J Biol Chem. 1969 Jun 10;244(11):2835–2845. [PubMed] [Google Scholar]
  12. Takeshita M., Mäkelä P. H. Glucosylation of lipopolysaccharide in Salmonella: biosynthesis of O antigen factor 12 2 . 3. The presence of 12 2 determinants in haptenic polysaccharides. J Biol Chem. 1971 Jun 25;246(12):3920–3927. [PubMed] [Google Scholar]
  13. Yuasa R., Levinthal M., Nikaido H. Biosynthesis of cell wall lipopolysaccharide in mutants of Salmonella. V. A mutant of Salmonella typhimurium defective in the synthesis of cytidine diphosphoabequose. J Bacteriol. 1969 Oct;100(1):433–444. doi: 10.1128/jb.100.1.433-444.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Yuasa R., Nakane K., Nikaido H. Structure of cell wall lipopolysaccharide from Salmonella typhimurium. Structure of lipopolysaccharide from a Semirough mutant. Eur J Biochem. 1970 Jul;15(1):63–71. doi: 10.1111/j.1432-1033.1970.tb00976.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES