Abstract
The annealing properties as measured by the restoration of transforming activity and hypochromicity of methylated albumin-kieselguhr (MAK)-fractionated complementary strands of Bacillus subtilis deoxyribonucleic acid (DNA) are presented. Temperature-absorbance measurements performed on annealed mixtures of various L and H strand fractions indicated the existence of a complementarity gradient between the two MAK peaks. The markers purA16, leu-8, metB5, thr-5, and the linked marker hisB2-try-2 exhibited different bimodal distributions on MAK columns. The transforming efficiency of heteroduplex mixtures, prepared by cross-annealing resolved complementary strands of wild-type and recipient DNA, was compared. The transforming efficiency of the wild-type L and H strands was equal in one preparation and unequal in a second preparation. It was found that in the second strand preparation the heteroduplex DNA containing the H strand from wild type was more efficient for all of the markers tested. The variations in transforming efficiencies of the complementary strands in heteroduplex molecules reported here and by others are due in part to strands of unequal length and probably to the self-annealing property of the H strands. At present, no conclusion could be made regarding the existence of strand selection bias during integration of donor DNA in competent B. subtilis cells.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BRESLER S. E., KRENEVA R. A., KUSHEV V. V., MOSEVITSKII M. I. THE MECHANISM OF MESSENGER-RNA REPLICATION IN BACTERIA. J Mol Biol. 1964 Jan;8:79–88. doi: 10.1016/s0022-2836(64)80150-9. [DOI] [PubMed] [Google Scholar]
- Bodmer W. F. Integration of deoxyribonuclease-treated DNA in bacillus subtilis transformation. J Gen Physiol. 1966 Jul;49(6):233–258. doi: 10.1085/jgp.49.6.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chilton M. D. Transforming Activity in Both Complementary Strands of Bacillus subtilis DNA. Science. 1967 Aug 18;157(3790):817–819. doi: 10.1126/science.157.3790.817. [DOI] [PubMed] [Google Scholar]
- Colli W., Oishi M. A procedure for gene purification: the purification of the ribosomal RNA genes of Bacillus subtilis as DNA-RNA hybrids. J Mol Biol. 1970 Aug;51(3):657–669. doi: 10.1016/0022-2836(70)90014-8. [DOI] [PubMed] [Google Scholar]
- Colli W., Oishi M. Ribosomal RNA genes in bacteria: evidence for the nature of the physical linkage between 16S and 23S RNA genes in Bacillus subtilis. Proc Natl Acad Sci U S A. 1969 Oct;64(2):642–649. doi: 10.1073/pnas.64.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dubnau D., Cirigliano C. Fate of transforming DNA following uptake by competent Bacillus subtilis. Formation and properties of products isolated from transformed cells which are derived entirely from donor DNA. J Mol Biol. 1972 Feb 28;64(1):9–29. doi: 10.1016/0022-2836(72)90318-x. [DOI] [PubMed] [Google Scholar]
- Dubnau D., Cirigliano C. Fate of transforming DNA following uptake by competent Bacillus subtilis. IV. The endwise attachment and uptake of transforming DNA. J Mol Biol. 1972 Feb 28;64(1):31–46. doi: 10.1016/0022-2836(72)90319-1. [DOI] [PubMed] [Google Scholar]
- Dubnau D., Davidoff-Abelson R. Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J Mol Biol. 1971 Mar 14;56(2):209–221. doi: 10.1016/0022-2836(71)90460-8. [DOI] [PubMed] [Google Scholar]
- GUILD W. R., ROBINSON M. Evidence for message reading from a unique strand of pneumococcal DNA. Proc Natl Acad Sci U S A. 1963 Jul;50:106–112. doi: 10.1073/pnas.50.1.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabor M., Hotchkiss R. D. Manifestation of linear organization in molecules of pneumococcal transforming DNA. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1441–1448. doi: 10.1073/pnas.56.5.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herriott R. M. FORMATION OF HETEROZYGOTES BY ANNEALING A MIXTURE OF TRANSFORMING DNAS. Proc Natl Acad Sci U S A. 1961 Feb;47(2):146–153. doi: 10.1073/pnas.47.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LACKS S. Molecular fate of DNA in genetic transformation of Pneumococcus. J Mol Biol. 1962 Jul;5:119–131. doi: 10.1016/s0022-2836(62)80067-9. [DOI] [PubMed] [Google Scholar]
- Margulies L., Remeza V., Rudner R. Asymmetric template function of microbial deoxyribonucleic acids: transcription of ribosomal and soluble ribonucleic acids. J Bacteriol. 1970 Sep;103(3):560–568. doi: 10.1128/jb.103.3.560-568.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nester E. W., Ganesan A. T., Lederberg J. EFFECTS OF MECHANICAL SHEAR ON GENETIC ACTIVITY OF BACILLUS SUBTILIS DNA. Proc Natl Acad Sci U S A. 1963 Jan;49(1):61–68. doi: 10.1073/pnas.49.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Notani N., Goodgal S. H. On the nature of recombinants formed during transformation in Hemophilus influenzae. J Gen Physiol. 1966 Jul;49(6):197–209. doi: 10.1085/jgp.49.6.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peterson J. M., Guild W. R. Fractionated strands of bacterial deoxyribonucleic acid. 3. Transformation efficiencies and rates of phenotypic expression. J Bacteriol. 1968 Dec;96(6):1991–1996. doi: 10.1128/jb.96.6.1991-1996.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Postel E. H., Goodgal S. H. Uptake of "single-stranded" DNA in Hemophilus influenzae and its ability to transform. J Mol Biol. 1966 Apr;16(2):317–327. doi: 10.1016/s0022-2836(66)80175-4. [DOI] [PubMed] [Google Scholar]
- Roger M., Beckmann C. O., Hotchkiss R. D. Fractionation of denatured pneumococcal DNA: evidence for resolution of complementary strands. J Mol Biol. 1966 Jun;18(1):174–194. doi: 10.1016/s0022-2836(66)80084-0. [DOI] [PubMed] [Google Scholar]
- Roger M., Beckmann C. O., Hotchkiss R. D. Separation of native and denatured fractions from partially denatured pneumococcal DNA. J Mol Biol. 1966 Jun;18(1):156–173. doi: 10.1016/s0022-2836(66)80083-9. [DOI] [PubMed] [Google Scholar]
- Roger M. Evidence for conversion of heteroduplex transforming DNAs to homoduplexes by recipient pneumococcal cells (DNA strand resolution-DNA repair-bacterial transformation-genetic recombination). Proc Natl Acad Sci U S A. 1972 Feb;69(2):466–470. doi: 10.1073/pnas.69.2.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudner R., Karkas J. D., Chargaff E. Separation of B. subtilis DNA into complementary strands, I. Biological properties. Proc Natl Acad Sci U S A. 1968 Jun;60(2):630–635. doi: 10.1073/pnas.60.2.630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rudner R., Remeza V. Chromatographically fractionated complementary strands of Bacillus subtilis deoxyribonucleic acid: biological properties. J Bacteriol. 1973 Feb;113(2):739–753. doi: 10.1128/jb.113.2.739-753.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith I., Colli W., Oishi M. Studies on the physical linkage of antibiotic resistance markers to ribosomal RNA genes in Bacillus subtilis. J Mol Biol. 1971 Nov 28;62(1):111–119. doi: 10.1016/0022-2836(71)90134-3. [DOI] [PubMed] [Google Scholar]
- Strauss N. Transformation of Bacillus subtilis using hybrid DNA molecules constructed by annealing resolved complementary strands. Genetics. 1970 Dec;66(4):583–593. doi: 10.1093/genetics/66.4.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tevethia M. J., Mandel M. Nature of the ethylenediaminetetraacetic acid requirement for transformation of Bacillus subtilis with single-stranded deoxyribonucleic acid. J Bacteriol. 1970 Mar;101(3):844–850. doi: 10.1128/jb.101.3.844-850.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
