Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Feb;113(2):1058–1060. doi: 10.1128/jb.113.2.1058-1060.1973

Photoprotection by Dipicolinate Against Inactivation of Bacterial Spores with Ultraviolet Light1

Nicholas Grecz 1,2, Terry Tang 1,2, Hilmer A Frank 1,2
PMCID: PMC285326  PMID: 4632312

Abstract

The resistance of three types of Bacillus cereus T spores to ultraviolet radiation corresponded to their dipicolinic acid (DPA) content. Photoprotection against ultraviolet light was observed in DPA-containing spores and in DPA-less spores irradiated through calcium dipicolinate.

Full text

PDF
1058

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg P. E., Grecz N. Relationship of dipicolinic acid content in spores of Bacillus cereus T to ultraviolet and gamma radiation resistance. J Bacteriol. 1970 Aug;103(2):517–519. doi: 10.1128/jb.103.2.517-519.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Donnellan J. E., Jr, Hosszu J. L., Rahn R. O., Stafford R. S. Effect of temperature on the photobiology and photochemistry of bacterial spores. Nature. 1968 Aug 31;219(5157):964–965. doi: 10.1038/219964a0. [DOI] [PubMed] [Google Scholar]
  3. Donnellan J. E., Jr, Setlow R. B. Thymine Photoproducts but not Thymine Dimers Found in Ultraviolet-Irradiated Bacterial Spores. Science. 1965 Jul 16;149(3681):308–310. doi: 10.1126/science.149.3681.308. [DOI] [PubMed] [Google Scholar]
  4. Donnellan J. E., Jr, Stafford R. S. The ultraviolet photochemistry and photobiology of vegetative cells and spores of Bacillus megaterium. Biophys J. 1968 Jan;8(1):17–28. doi: 10.1016/S0006-3495(68)86471-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Frank H. A., Tonaki K. I. Pseudogermination in dipicolinic acid-less spores of a Bacillus cereus T mutant. J Bacteriol. 1971 Apr;106(1):292–293. doi: 10.1128/jb.106.1.292-293.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LEIF W. R., HEBERT J. E. Effect of urocanic acid and dipicolinic acid on bacteria exposed to ultraviolet radiation. Am J Hyg. 1960 May;71:285–291. doi: 10.1093/oxfordjournals.aje.a120112. [DOI] [PubMed] [Google Scholar]
  7. Munakata N., Rupert C. S. Genetically controlled removal of "spore photoproduct" from deoxyribonucleic acid of ultraviolet-irradiated Bacillus subtilis spores. J Bacteriol. 1972 Jul;111(1):192–198. doi: 10.1128/jb.111.1.192-198.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. POWELL J. F. Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium. Biochem J. 1953 May;54(2):210–211. doi: 10.1042/bj0540210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pearce S. M., Fitz-James P. C. Spore refractility in variants of Bacillus cereus treated with actinomycin D. J Bacteriol. 1971 Jul;107(1):337–344. doi: 10.1128/jb.107.1.337-344.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. ROMIG W. R., WYSS O. Some effects of ultraviolet radiation of sporulating cultures of Bacillus cereus. J Bacteriol. 1957 Sep;74(3):386–391. doi: 10.1128/jb.74.3.386-391.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rahn R. O., Hosszu H. L. Influence of relative humidity on the photochemistry of DNA films. Biochim Biophys Acta. 1969 Sep 17;190(1):126–131. doi: 10.1016/0005-2787(69)90161-0. [DOI] [PubMed] [Google Scholar]
  12. Stafford R. S., Donnellan J. E., Jr Photochemical evidence for conformation changes in DNA during germination of bacterial spores. Proc Natl Acad Sci U S A. 1968 Mar;59(3):822–828. doi: 10.1073/pnas.59.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Steinberg W., Halvorson H. O. Timing of enzyme synthesis during outgrowth of spores of Bacillus cereus. I. Ordered enzyme synthesis. J Bacteriol. 1968 Feb;95(2):469–478. doi: 10.1128/jb.95.2.469-478.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tanooka H., Terano H. Formation of spore-specific DNA photoproducts in UV-irradiated bacterial spore-spheroplasts but not in ruptured spheroplasts. J Biochem. 1970 May;67(5):735–736. doi: 10.1093/oxfordjournals.jbchem.a129301. [DOI] [PubMed] [Google Scholar]
  15. Tanooka H. Ultraviolet resistance of DNA in spore spheroplasts of Bacillus subtilis as measured by the transforming activity. Biochim Biophys Acta. 1968 Sep 24;166(2):581–583. doi: 10.1016/0005-2787(68)90248-7. [DOI] [PubMed] [Google Scholar]
  16. Varghese A. J. 5-Thyminyl-5,6-dihydrothymine from DNA irradiated with ultraviolet light. Biochem Biophys Res Commun. 1970 Feb 6;38(3):484–490. doi: 10.1016/0006-291x(70)90739-4. [DOI] [PubMed] [Google Scholar]
  17. WOESE C. Further studies on the ionizing radiation inactivation of bacterial spores. J Bacteriol. 1959 Jan;77(1):38–42. doi: 10.1128/jb.77.1.38-42.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wise J., Swanson A., Halvorson H. O. Dipicolinic acid-less mutants of Bacillus cereus. J Bacteriol. 1967 Dec;94(6):2075–2076. doi: 10.1128/jb.94.6.2075-2076.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES