Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Jun;114(3):1052–1057. doi: 10.1128/jb.114.3.1052-1057.1973

Regulation of Bacteriochlorophyll Synthesis by Oxygen in Respiratory Mutants of Rhodopseudomonas capsulata

Barry Marrs a,1, Howard Gest a
PMCID: PMC285364  PMID: 4712566

Abstract

Respiratory mutants of the facultative photosynthetic bacterium Rhodopseudomonas capsulata were used to investigate the mechanism of (reversible) inhibition of bacteriochlorophyll (BChl) synthesis by molecular oxygen. Although mutant strain M5 lacks cytochrome oxidase activity, it closely resembles the parental wild-type strain in respect to the effect of O2 on BChl formation. This observation does not support an earlier hypothesis that O2 regulates BChl synthesis through an effect on the redox state of a component of the respiratory electron transport system. Mutant strain M2 shows normal cytochrome oxidase activity, but lacks both reduced nicotinamide adenine dinucleotide and succinate dehydrogenase activities; relative to the parental strain, BChl synthesis in M2 is more sensitive to O2 inhibition. The foregoing and results of related experiments can be accounted for by a revised interpretation of the O2 effect, which proposes that O2 directly inactivates a “factor” necessary for BChl formation and that, at relatively low O2 tension, the inactivation can be reversed by a flow of electrons (derived from reduced nicotinamide adenine dinucleotide and succinate) diverted from a portion of the electron transport system delimited by the mutational blocks in M2 and M5.

Full text

PDF
1052

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CLAYTON R. K. TOWARD THE ISOLATION OF A PHOTOCHEMICAL REACTION CENTER IN RHODOPSEUDOMONAS SPHEROIDES. Biochim Biophys Acta. 1963 Nov 29;75:312–323. doi: 10.1016/0006-3002(63)90618-8. [DOI] [PubMed] [Google Scholar]
  2. COHEN-BAZIRE G., SISTROM W. R., STANIER R. Y. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol. 1957 Feb;49(1):25–68. doi: 10.1002/jcp.1030490104. [DOI] [PubMed] [Google Scholar]
  3. Lascelles J., Wertlieb D. Mutant strains of Rhodopseudomonas spheroides which form photosynthetic pigments aerobically in the dark. Growth characteristics and enzymic activities. Biochim Biophys Acta. 1971 Mar 2;226(2):328–340. doi: 10.1016/0005-2728(71)90100-9. [DOI] [PubMed] [Google Scholar]
  4. Marrs B., Gest H. Genetic mutations affecting the respiratory electron-transport system of the photosynthetic bacterium Rhodopseudomonas capsulata. J Bacteriol. 1973 Jun;114(3):1045–1051. doi: 10.1128/jb.114.3.1045-1051.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Marrs B., Stahl C. L., Lien S., Gest H. Biochemical physiology of a respiration-deficient mutant of the photosynthetic bacterium Rhodopseudomonas capsulata. Proc Natl Acad Sci U S A. 1972 Apr;69(4):916–920. doi: 10.1073/pnas.69.4.916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. ORMEROD J. G., ORMEROD K. S., GEST H. Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria; relationships with nitrogen metabolism. Arch Biochem Biophys. 1961 Sep;94:449–463. doi: 10.1016/0003-9861(61)90073-x. [DOI] [PubMed] [Google Scholar]
  7. Oelze J., Drews G. Membranes of photosynthetic bacteria. Biochim Biophys Acta. 1972 Apr 18;265(2):209–239. doi: 10.1016/0304-4157(72)90003-2. [DOI] [PubMed] [Google Scholar]
  8. Schön G., Drews G. Der Redoxzustand des NAD(P) und der Cytochrome b und c2 in Abhängigkeit vom pO2 bei einigen Athiorhodaceae. Arch Mikrobiol. 1968;61(4):317–326. [PubMed] [Google Scholar]
  9. Wittenberg T., Sistrom W. R. Mutant of rhodopseudomonas spheroides unable to grow aerobically. J Bacteriol. 1971 Jun;106(3):732–738. doi: 10.1128/jb.106.3.732-738.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Yates M. G. The effect of ATP upon the oxygen sensitivity of nitrogenase from Azotobacter chroococcum. Eur J Biochem. 1972 Sep 18;29(2):386–392. doi: 10.1111/j.1432-1033.1972.tb02000.x. [DOI] [PubMed] [Google Scholar]
  11. Zilinsky J. W., Sojka G. A., Gest H. Energy charge regulation in photosynthetic bacteria. Biochem Biophys Res Commun. 1971 Mar 5;42(5):955–961. doi: 10.1016/0006-291x(71)90523-7. [DOI] [PubMed] [Google Scholar]
  12. van Niel C. B. THE CULTURE, GENERAL PHYSIOLOGY, MORPHOLOGY, AND CLASSIFICATION OF THE NON-SULFUR PURPLE AND BROWN BACTERIA. Bacteriol Rev. 1944 Mar;8(1):1–118. doi: 10.1128/br.8.1.1-118.1944. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES