Abstract
Protoplasts of Bacillus stearothermophilus NCA 1503-4R are resistant to osmotic rupture and are not sensitive to mechanical manipulation. Protoplast stability is maintained by divalent cations. The thermostability of protoplasts is enhanced when the cells are grown at elevated temperatures. The membrane content of the cell and the protein-to-lipid ratio of the membrane increases as the growth temperature is increased. The membrane-bound nicotinamide adenine dinucleotide (reduced form) oxidase system from cultures grown at 70 C was more thermostable than the same enzyme system from cultures grown at 55 C. Alkaline phosphatase was resistant to thermal inactivation in the intact protoplast. The extent of this protection is dependent on protoplast stability.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAM D. ELECTRON MICROSCOPE OBSERVATIONS ON INTACT CELLS, PROTOPLASTS, AND THE CYTOPLASMIC MEMBRANE OF BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1965 Mar;89:855–873. doi: 10.1128/jb.89.3.855-873.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BROWN D. K., MILITZER W., GEORGI C. E. The effect of growth temperature on the heat stability of a bacterial pyrophosphatase. Arch Biochem Biophys. 1957 Jul;70(1):248–256. doi: 10.1016/0003-9861(57)90098-x. [DOI] [PubMed] [Google Scholar]
- Bodman H., Welker N. E. Isolation of spheroplast membranes and stability of spheroplasts of Bacillus stearothermophilus. J Bacteriol. 1969 Feb;97(2):924–935. doi: 10.1128/jb.97.2.924-935.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAMPBELL L. L., Jr Purification and properties of an alpha-amylase from facultative thermophilic bacteria. Arch Biochem Biophys. 1955 Jan;54(1):154–161. doi: 10.1016/0003-9861(55)90018-7. [DOI] [PubMed] [Google Scholar]
- CHO K. Y., SALTON M. R. FATTY ACID COMPOSITION OF THE LIPIDS OF MEMBRANES OF GRAM-POSITIVE BACTERIA AND "WALLS" OF GRAM-NEGATIVE BACTERIA. Biochim Biophys Acta. 1964 Dec 2;84:773–775. doi: 10.1016/0926-6542(64)90043-5. [DOI] [PubMed] [Google Scholar]
- Chan M., Himes R. H., Akagi J. M. Fatty acid composition of thermophilic, mesophilic, and psychrophilic clostridia. J Bacteriol. 1971 Jun;106(3):876–881. doi: 10.1128/jb.106.3.876-881.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan M., Virmani Y. P., Himes R. H., Akagi J. M. Spin-labeling studies on the membrane of a facultative thermophilic bacillus. J Bacteriol. 1973 Jan;113(1):322–328. doi: 10.1128/jb.113.1.322-328.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daron H. H. Fatty acid composition of lipid extracts of a thermophilic Bacillus species. J Bacteriol. 1970 Jan;101(1):145–151. doi: 10.1128/jb.101.1.145-151.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisenberg R. C., Yu L., Wolin M. J. Masking of Bacillus megaterium KM membrane reduced nicotinamide adenine dinucleotide oxidase and solubilization studies. J Bacteriol. 1970 Apr;102(1):161–171. doi: 10.1128/jb.102.1.161-171.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedman S. M. Protein-synthesizing machinery of thermophilic bacteria. Bacteriol Rev. 1968 Mar;32(1):27–38. doi: 10.1128/br.32.1.27-38.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isono K. Enzymological differences of alpha-amylase from Bacillus stearothermophilus grown at 37 degrees C and 55 degrees C. Biochem Biophys Res Commun. 1970 Nov 25;41(4):852–857. doi: 10.1016/0006-291x(70)90161-0. [DOI] [PubMed] [Google Scholar]
- Kiszkiss D. F., Downey R. J. Localization and solubilization of the respiratory nitrate reductase of Bacillus stearothermophilus. J Bacteriol. 1972 Feb;109(2):803–810. doi: 10.1128/jb.109.2.803-810.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MITCHELL P., MOYLE J. Autolytic release and osmotic properties of protoplasts from Staphylococcus aureus. J Gen Microbiol. 1957 Feb;16(1):184–194. doi: 10.1099/00221287-16-1-184. [DOI] [PubMed] [Google Scholar]
- SALTON M. R., MCQUILLEN K. Bacterial protoplasts. II. Bacteriophage multiplication in protoplasts of sensitive and lysogenic strains of Bacillus megaterium. Biochim Biophys Acta. 1955 Aug;17(4):465–472. doi: 10.1016/0006-3002(55)90408-x. [DOI] [PubMed] [Google Scholar]
- Salton M. R. Structure and function of bacterial cell membranes. Annu Rev Microbiol. 1967;21:417–442. doi: 10.1146/annurev.mi.21.100167.002221. [DOI] [PubMed] [Google Scholar]
- Shen P. Y., Coles E., Foote J. L., Stenesh J. Fatty acid distribution in mesophilic and thermophilic strains of the genus Bacillus. J Bacteriol. 1970 Aug;103(2):479–481. doi: 10.1128/jb.103.2.479-481.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WELKER N. E., CAMPBELL L. L. INDUCTION AND PROPERTIES OF A TEMPERATURE BACTERIOPHAGE FROM BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1965 Jan;89:175–184. doi: 10.1128/jb.89.1.175-184.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weerkamp A., Mac Elroy R. D. Lactae dehydrogenase from an extremely thermophilic Bacillus. Arch Mikrobiol. 1972;85(2):113–122. doi: 10.1007/BF00409292. [DOI] [PubMed] [Google Scholar]
- Welker N. E. Purification and properties of a thermophilic bacteriophage lytic enzyme. J Virol. 1967 Jun;1(3):617–625. doi: 10.1128/jvi.1.3.617-625.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welker N. E. Structure of the cell wall of Bacillus stearothermophiluys: mode of action of a thermophilic bacteriophage lytic enzyme. J Bacteriol. 1971 Sep;107(3):697–703. doi: 10.1128/jb.107.3.697-703.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]


