Abstract
Qualitatively, the protein and fatty acid composition of purified mesosomal vesicles and the plasma membrane isolated from Staphylococcus aureus ATCC 6538P are identical, the major difference between these two cellular components being only quantitative in nature. Mesosomal vesicles and plasma membranes, when subjected to acidic or neutral disk gel electrophoresis, exhibited more than 22 bands of protein. With urea-acetic acid gels, the plasma membrane had a higher concentration of “slower-migrating proteins” whereas “faster-migrating proteins” predominated in the mesosomal vesicles. With neutral disk gel electrophoresis, mesosomal vesicles exhibited one prominent protein band with an approximate molecular weight of 35,000 and which was four times greater than that found in the corresponding region on gels of the plasma membrane. Finally, fatty acid analyses by capillary column gas chromatography showed that although the fatty acid composition is the same, the fatty acid content in mesosomal vesicles is 48% greater than that of the plasma membrane. The dominant fatty acids in both of these cellular components are the iso and anteiso branched methyl C15, C17, and C19 fatty acids and comprise at least 85% of the total fatty acids extracted. These results show that distinct chemical differences exist between the mesosomal vesicles and the plasma membrane of Staphylococcus aureus.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ellar D. J., Thomas T. D., Posgate J. A. Properties of mesosomal membranes isolated from Micrococcus lysodeikticus and Bacillus megaterium. Biochem J. 1971 May;122(5):44P–45P. doi: 10.1042/bj1220044p. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghosh B. K., Murray R. G. Fractionation and characterization of the plasma and mesosome membrane of Listeria monocytogenes. J Bacteriol. 1969 Jan;97(1):426–440. doi: 10.1128/jb.97.1.426-440.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grula E. A., Savoy C. F. A detergent-polyacrylamide gel system for electrophoretic resolution of membrane and wall proteins. Biochem Biophys Res Commun. 1971 Apr 16;43(2):325–332. doi: 10.1016/0006-291x(71)90756-x. [DOI] [PubMed] [Google Scholar]
- HOFMANN K., HENIS D. B., PANOS C. Fatty acid interconversions in lactobacilli. J Biol Chem. 1957 Sep;228(1):349–355. [PubMed] [Google Scholar]
- JAMES A. T. Qualitative and quantitative determination of the fatty acids by gas-liquid chromatography. Methods Biochem Anal. 1960;8:1–59. doi: 10.1002/9780470110249.ch1. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Owen P., Freer J. H. Isolation and properties of mesosomal membrane fractions from Micrococcus lysodeikticus. Biochem J. 1972 Oct;129(4):907–917. doi: 10.1042/bj1290907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panos C., Cohen M., Fagan G. Lipid alterations after cell wall inhibition. Fatty acid content of Streptococcus pyogenes and derived L-form. Biochemistry. 1966 May;5(5):1461–1468. doi: 10.1021/bi00869a003. [DOI] [PubMed] [Google Scholar]
- Panos C., Henrikson C. V. Fatty acid interconversions in Mycoplasma sp. KHS. Biochemistry. 1969 Feb;8(2):652–658. doi: 10.1021/bi00830a029. [DOI] [PubMed] [Google Scholar]
- Patch C. T., Landman O. E. Comparison of the biochemistry and rates of synthesis of mesosomal and peripheral membranes in Bacillus subtilis. J Bacteriol. 1971 Jul;107(1):345–357. doi: 10.1128/jb.107.1.345-357.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Popkin T. J., Theodore T. S., Cole R. M. Electron microscopy during release and purification of mesosomal vesicles and protoplast membranes from Staphylococcus aureus. J Bacteriol. 1971 Sep;107(3):907–917. doi: 10.1128/jb.107.3.907-917.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaveley D. A. The isolation and characterisation of cytoplasmic membranes and mesosomes of Bacillus licheniformis 6346. Biochem Biophys Res Commun. 1968 Mar 27;30(6):649–655. doi: 10.1016/0006-291x(68)90562-7. [DOI] [PubMed] [Google Scholar]
- Reusch V. M., Jr, Burger M. M. The bacterial mesosome. Biochim Biophys Acta. 1973 Apr 3;300(1):79–104. doi: 10.1016/0304-4157(73)90012-9. [DOI] [PubMed] [Google Scholar]
- Salton M. R., Schmitt M. D., Trefts P. E. Fractionation of isolated bacterial membranes. Biochem Biophys Res Commun. 1967 Dec 15;29(5):728–733. doi: 10.1016/0006-291x(67)90278-1. [DOI] [PubMed] [Google Scholar]
- Salton M. R. Structure and function of bacterial cell membranes. Annu Rev Microbiol. 1967;21:417–442. doi: 10.1146/annurev.mi.21.100167.002221. [DOI] [PubMed] [Google Scholar]
- Theodore T. S., Popkin T. J., Cole R. M. The separation and isolation of plasma membranes and mesosomal vesicles from Staphylococcus aureus. Prep Biochem. 1971;1(3):233–248. doi: 10.1080/00327487108081942. [DOI] [PubMed] [Google Scholar]
- Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
- White D. C., Frerman F. E. Extraction, characterization, and cellular localization of the lipids of Staphylococcus aureus. J Bacteriol. 1967 Dec;94(6):1854–1867. doi: 10.1128/jb.94.6.1854-1867.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White D. C., Frerman F. E. Fatty acid composition of the complex lipids of Staphylococcus aureus during the formation of the membrane-bound electron transport system. J Bacteriol. 1968 Jun;95(6):2198–2209. doi: 10.1128/jb.95.6.2198-2209.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]