Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Nov;116(2):818–822. doi: 10.1128/jb.116.2.818-822.1973

Modification of Ribosomes in Cryptopleurine-Resistant Mutants of Yeast

Lawrence Skogerson 1,2, Calvin McLaughlin 1,2, Eunice Wakatama 1,2
PMCID: PMC285451  PMID: 4583252

Abstract

Cryptopleurine-resistant mutants of Saccharomyces cerevisiae were isolated. A single, recessive nuclear gene, very closely linked to the mating locus (2.1 centimorgans), is responsible for resistance. Ribosomes from the mutants were found to be resistant to cryptopleurine when analyzed by poly(U)-directed polyphenylalanine synthesis. Analysis of the distribution of ribosomes between monosomes and polysomes in sensitive cells exposed to cryptopleurine suggests that some step is inhibited during the elongation phase of protein synthesis.

Full text

PDF
818

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Battaner E., Vazquez D. Inhibitors of protein synthesis by ribosomes of the 80-S type. Biochim Biophys Acta. 1971 Dec 16;254(2):316–330. doi: 10.1016/0005-2787(71)90840-9. [DOI] [PubMed] [Google Scholar]
  2. Donaldson G. R., Atkinson M. R., Murray A. W. Inhibition of protein synthesis in Ehrlich ascites-tumour cells by the phenanthrene alkaloids tylophorine, tylocrebrine and cryptopleurine. Biochem Biophys Res Commun. 1968 Apr 5;31(1):104–109. doi: 10.1016/0006-291x(68)90037-5. [DOI] [PubMed] [Google Scholar]
  3. Gordon J. Hydrolysis of guanosine 5'-triphosphate associated wh binding of aminoacyl transfer ribonucleic acid to ribosomes. J Biol Chem. 1969 Oct 25;244(20):5680–5686. [PubMed] [Google Scholar]
  4. Hartwell L. H. Macromolecule synthesis in temperature-sensitive mutants of yeast. J Bacteriol. 1967 May;93(5):1662–1670. doi: 10.1128/jb.93.5.1662-1670.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartwell L. H., McLaughlin C. S. Temperature-sensitive mutants of yeast exhibiting a rapid inhibition of protein synthesis. J Bacteriol. 1968 Nov;96(5):1664–1671. doi: 10.1128/jb.96.5.1664-1671.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haslam J. M., Davey P. J., Linnane A. W., Atkinson M. R. Differentiation in vitro by phenanthrene alkaloids of yeast mitochondrial protein synthesis from ribosomal systems of both yeast and bacteria. Biochem Biophys Res Commun. 1968 Nov 8;33(3):368–373. doi: 10.1016/0006-291x(68)90579-2. [DOI] [PubMed] [Google Scholar]
  7. Huang M. T., Grollman A. P. Mode of action of tylocrebrine: effects on protein and nucleic acid synthesis. Mol Pharmacol. 1972 Sep;8(5):538–550. [PubMed] [Google Scholar]
  8. Mortimer R. K., Hawthorne D. C. Genetic mapping in Saccharomyces. Genetics. 1966 Jan;53(1):165–173. doi: 10.1093/genetics/53.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Pestka S., Rosenfeld H., Harris R., Hintikka H. Studies on transfer ribonucleic acid-ribosome complexes. XXI. Effect of antibiotics on peptidyl-puromycin synthesis by mammalian polyribosomes. J Biol Chem. 1972 Nov 10;247(21):6895–6900. [PubMed] [Google Scholar]
  10. Pomper S., Burkholder P. R. Studies on the Biochemical Genetics of Yeast. Proc Natl Acad Sci U S A. 1949 Aug;35(8):456–464. doi: 10.1073/pnas.35.8.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Richter D. Formation of a ternary complex between yeast aminoacyl-tRNA binding factor, GTP, and aminoacyl-tRNA. Biochem Biophys Res Commun. 1970 Mar 12;38(5):864–870. doi: 10.1016/0006-291x(70)90800-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES