Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1973 Nov;116(2):836–846. doi: 10.1128/jb.116.2.836-846.1973

Formation of Hydrogen and Formate by Ruminococcus albus

Terry L Miller 1, M J Wolin 2
PMCID: PMC285454  PMID: 4745433

Abstract

Radioisotopic growth studies with specifically labeled 14C-glucose confirmed that Ruminococcus albus, strain 7, ferments glucose mainly by the Embden-Myerhof-Parnas pathway to acetate, ethanol, formate, CO2, H2, and an unidentified product. Cell suspensions and extracts converted pyruvate to acetate, H2, CO2, and a small amount of ethanol. Formate was not produced from pyruvate and was not degraded to H2 and CO2, indicating that formate was not an intermediate in the production of H2 and CO2 from pyruvate. Cell extract and 14C-glucose growth studies showed that the H2-producing pyruvate lyase reaction is the major route of H2 and CO2 production. An active pyruvate-14CO2 exchange reaction was demonstrable with cell extracts. The 14C-glucose growth studies indicated that formate, as well as CO2, arises from the 3 and 4 carbon positions of glucose. A formate-producing pyruvate lyase system was not demonstrable either by pyruvate-14C-formate exchange or by net formate formation from pyruvate. Growth studies with unlabeled glucose and labeled 14CO2 or 14C-formate suggest that formate arises from the 3 and 4 carbon positions of glucose by an irreversible reduction of CO2. The results of the studies on the time course of formate production showed that formate production is a late function of growth, and the rate of production, as well as the total amount produced, increases as the glucose concentration available to the organism increases.

Full text

PDF
836

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreesen J. R., Gottschalk G., Schlegel H. G. Clostridium formicoaceticum nov. spec. isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch Mikrobiol. 1970;72(2):154–174. doi: 10.1007/BF00409521. [DOI] [PubMed] [Google Scholar]
  2. BAUCHOP T., DAWES E. A. Metabolism of pyruvic and formic acids by Zymosarcina ventriculi. Biochim Biophys Acta. 1959 Nov;36:294–296. doi: 10.1016/0006-3002(59)90114-3. [DOI] [PubMed] [Google Scholar]
  3. BRYANT M. P., SMALL N., BOUMA C., ROBINSON I. M. Characteristics of ruminal anaerobic celluloytic cocci and Cillobacterium cellulosolvens n. sp. J Bacteriol. 1958 Nov;76(5):529–537. doi: 10.1128/jb.76.5.529-537.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chase T., Jr, Rabinowitz J. C. Role of pyruvate and S-adenosylmethioine in activating the pyruvate formate-lyase of Escherichia coli. J Bacteriol. 1968 Oct;96(4):1065–1078. doi: 10.1128/jb.96.4.1065-1078.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dehority B. A. Carbon dioxide requirement of various species of rumen bacteria. J Bacteriol. 1971 Jan;105(1):70–76. doi: 10.1128/jb.105.1.70-76.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GEST H., PECK H. D., Jr A study of the hydrogenlyase reaction with systems derived from normal and anaerogenic coli-aerogenes bacteria. J Bacteriol. 1955 Sep;70(3):326–334. doi: 10.1128/jb.70.3.326-334.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HUNGATE R. E. Microorganisms in the rumen of cattle fed a constant ration. Can J Microbiol. 1957 Mar;3(2):289–311. doi: 10.1139/m57-034. [DOI] [PubMed] [Google Scholar]
  8. Iannotti E. L., Kafkewitz D., Wolin M. J., Bryant M. P. Glucose fermentation products in Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H 2 . J Bacteriol. 1973 Jun;114(3):1231–1240. doi: 10.1128/jb.114.3.1231-1240.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Joyner A. E., Jr, Baldwin R. L. Enzymatic studies of pure cultures of rumen microorganisms. J Bacteriol. 1966 Nov;92(5):1321–1330. doi: 10.1128/jb.92.5.1321-1330.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KISTNER A., GOUWS L. CELLULOLYTIC COCCI OCCURRING IN THE RUMEN OF SHEEP CONDITIONED TO LUCERNE HAY. J Gen Microbiol. 1964 Mar;34:447–458. doi: 10.1099/00221287-34-3-447. [DOI] [PubMed] [Google Scholar]
  11. Knappe J., Bohnert E., Brummer W. S-adenosyl-L-methionine, a component of the clastic dissimilation of pyruvate in Escherichia coli. Biochim Biophys Acta. 1965 Oct 18;107(3):603–605. doi: 10.1016/0304-4165(65)90205-9. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Li L. F., Ljungdahl L., Wood H. G. Properties of Nicotinamide Adenine Dinucleotide Phosphate-Dependent Formate Dehydrogenase from Clostridium thermoaceticum. J Bacteriol. 1966 Aug;92(2):405–412. doi: 10.1128/jb.92.2.405-412.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MORTLOCK R. P., VALENTINE R. C., WOLFE R. S. Carbon dioxide activation in the pyruvate clastic system of Clostridium butyricum. J Biol Chem. 1959 Jul;234(7):1653–1656. [PubMed] [Google Scholar]
  15. MORTLOCK R. P., WOLFE R. S. Reversal of pyruvate oxidation in Clostridium butyricum. J Biol Chem. 1959 Jul;234(7):1657–1658. [PubMed] [Google Scholar]
  16. McCormick N. G., Ordal E. J., Whiteley H. R. DEGRADATION OF PYRUVATE BY MICROCOCCUS LACTILYTICUS I. : General Properties of the Formate-Exchange Reaction. J Bacteriol. 1962 Apr;83(4):887–898. doi: 10.1128/jb.83.4.887-898.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McCormick N. G., Ordal E. J., Whiteley H. R. DEGRADATION OF PYRUVATE BY MICROCOCCUS LACTILYTICUS II. : Studies of Cofactors in the Formate-Exchange Reaction. J Bacteriol. 1962 Apr;83(4):899–906. doi: 10.1128/jb.83.4.899-906.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nakayama H., Midwinter G. G., Krampitz L. O. Properties of the pyruvate formate-lyase reaction. Arch Biochem Biophys. 1971 Apr;143(2):526–534. doi: 10.1016/0003-9861(71)90237-2. [DOI] [PubMed] [Google Scholar]
  19. O'Brien W. E., Ljungdahl L. G. Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J Bacteriol. 1972 Feb;109(2):626–632. doi: 10.1128/jb.109.2.626-632.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stephenson M. P., Dawes E. A. Pyruvic acid and formic acid metabolism in Sarcina ventriculi and the role of ferredoxin. J Gen Microbiol. 1971 Dec;69(3):331–343. doi: 10.1099/00221287-69-3-331. [DOI] [PubMed] [Google Scholar]
  21. Stephenson M., Stickland L. H. Hydrogenlyases: Bacterial enzymes liberating molecular hydrogen. Biochem J. 1932;26(3):712–724. doi: 10.1042/bj0260712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thauer R. K. CO(2)-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO(2) in Clostridium thermoaceticum. FEBS Lett. 1972 Oct 15;27(1):111–115. doi: 10.1016/0014-5793(72)80421-6. [DOI] [PubMed] [Google Scholar]
  23. Thauer R. K., Kirchniawy F. H., Jungermann K. A. Properties and function of the pyruvate-formate-lyase reaction in clostridiae. Eur J Biochem. 1972 May 23;27(2):282–290. doi: 10.1111/j.1432-1033.1972.tb01837.x. [DOI] [PubMed] [Google Scholar]
  24. WHITELEY H. R., McCORMICK N. G. Degradation of pyruvate by Micrococcus lactilyticus. III. Properties and cofactor requirements of the carbon dioxide-exchange reaction. J Bacteriol. 1963 Feb;85:382–393. doi: 10.1128/jb.85.2.382-393.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WOLFE R. S., O'KANE D. J. Cofactors of the carbon dioxide exchange reaction of Clostridium butyricum. J Biol Chem. 1955 Aug;215(2):637–643. [PubMed] [Google Scholar]
  26. WOLFE R. S., O'KANE D. J. Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J Biol Chem. 1953 Dec;205(2):755–765. [PubMed] [Google Scholar]
  27. Wolin E. A., Wolfe R. S., Wolin M. J. Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J Bacteriol. 1964 May;87(5):993–998. doi: 10.1128/jb.87.5.993-998.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES