Abstract
Thermoplasma acidophilum grows optimally under aeration at 59 C and pH 2. Both intact cells and membranes disaggregate below pH 1 and above pH 5, producing no sedimentable particles. Increase in ionic strength at pH 5 or below results in cellular lysis and membrane disaggregation. Membranous components produced by lysis at alkaline pH reaggregate upon reduction of both pH and ionic strength. Osmotic environment plays little role in cellular stability. Membranes prepared by sonic lysis at pH 5 exhibit vesicular structures and are composed of multiple proteins. Although the amino acid composition of the membrane proteins is similar to other mycoplasmal membranes, the number of free amino and carboxyl groups is less than half of those in Acholeplasma. Reduction of the number of free carboxyl groups results in membrane stabilization over a wide range of pH. Increase in the number of free amino groups reverses the stability of membranes relative to pH. Acidophily in Thermoplasma can be related to a significant reduction in repulsing negative charges on the membrane proteins.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BROWN A. D. THE DEVELOPMENT OF HALOPHILIC PROPERTIES IN BACTERIAL MEMBRANES BY ACYLATION. Biochim Biophys Acta. 1964 Oct 9;93:136–142. doi: 10.1016/0304-4165(64)90267-3. [DOI] [PubMed] [Google Scholar]
- Belly R. T., Brock T. D. Cellular stability of a thermophilic, acidophilic mycoplasma. J Gen Microbiol. 1972 Dec;73(3):465–469. doi: 10.1099/00221287-73-3-465. [DOI] [PubMed] [Google Scholar]
- Choules G. L., Bjorklund R. F. Evidence of beta structure in Mycoplasma membranes. Circular dichroism, optical rotatory dispersion, and infrared studies. Biochemistry. 1970 Nov 24;9(24):4759–4767. doi: 10.1021/bi00826a020. [DOI] [PubMed] [Google Scholar]
- Darland G., Brock T. D., Samsonoff W., Conti S. F. A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science. 1970 Dec 25;170(3965):1416–1418. doi: 10.1126/science.170.3965.1416. [DOI] [PubMed] [Google Scholar]
- Engelman D. M., Morowitz H. J. Characterization of the plasma membrane of Mycoplasma laidlawii. IV. Structure and composition of membrane and aggregated components. Biochim Biophys Acta. 1968 Apr 29;150(3):385–396. doi: 10.1016/0005-2736(68)90137-5. [DOI] [PubMed] [Google Scholar]
- Hoare D. G., Koshland D. E., Jr A method for the quantitative modification and estimation of carboxylic acid groups in proteins. J Biol Chem. 1967 May 25;242(10):2447–2453. [PubMed] [Google Scholar]
- Kushner D. J. Halophilic bacteria. Adv Appl Microbiol. 1968;10:73–99. doi: 10.1016/s0065-2164(08)70189-8. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Langworthy T. A., Smith P. F., Mayberry W. R. Lipids of Thermoplasma acidophilum. J Bacteriol. 1972 Dec;112(3):1193–1200. doi: 10.1128/jb.112.3.1193-1200.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MOROWITZ H. J., TOURTELLOTTE M. E., GUILD W. R., CASTRO E., WOESE C. The chemical composition and submicroscopic morphology of Mycoplasma gallisepticum, avian PPLO 5969. J Mol Biol. 1962 Feb;4:93–103. doi: 10.1016/s0022-2836(62)80041-2. [DOI] [PubMed] [Google Scholar]
- ROSEN H. A modified ninhydrin colorimetric analysis for amino acids. Arch Biochem Biophys. 1957 Mar;67(1):10–15. doi: 10.1016/0003-9861(57)90241-2. [DOI] [PubMed] [Google Scholar]
- Smith P. F., Koostra W. L., Mayberry W. R. Observations on membranes of Mycoplasma laidlawii strain B. J Bacteriol. 1969 Dec;100(3):1166–1174. doi: 10.1128/jb.100.3.1166-1174.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein D. B., Marsh J. B., Glick M. C., Warren L. Membranes of animal cells. IV. Lipids of the L cell and its surface membrane. J Biol Chem. 1969 Aug 10;244(15):4103–4111. [PubMed] [Google Scholar]